《2022年通用版小学数学典型应用题1 含答案试题(试卷).doc》由会员分享,可在线阅读,更多相关《2022年通用版小学数学典型应用题1 含答案试题(试卷).doc(57页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、本文档为独家精品文档尊重原创 切勿盗版以下资源均为最新版感谢您的支持小学数学典型应用题小学数学中把含有数量关系的实际问题用语言或文字表达出来,这样所形成的题目叫做应用题。任何一道应用题都由两局部构成。第一局部是条件简称条件,第二局部是所求问题简称问题。应用题的条件和问题,组成了应用题的结构。应用题可分为一般应用题与典型应用题。没有特定的解答规律的两步以上运算的应用题,叫做一般应用题。题目中有特殊的数量关系,可以用特定的步骤和方法来解答的应用题,叫做典型应用题。这本资料主要研究以下30类典型应用题: 1、归一问题 2、归总问题 3、和差问题 4、和倍问题 5、差倍问题 6、倍比问题 7、相遇问题
2、 8、追及问题 9、植树问题10、年龄问题11、行船问题12、列车问题13、时钟问题14、盈亏问题15、工程问题16、正反比例问题17、按比例分配18、百分数问题19、“牛吃草问题20、鸡兔同笼问题21、方阵问题22、商品利润问题23、存款利率问题24、溶液浓度问题25、构图布数问题26、幻方问题27、抽屉原那么问题28、公约公倍问题29、最值问题30、列方程问题1 归一问题【含义】 在解题时,先求出一份是多少即单一量,然后以单一量为标准,求出所要求的数量。这类应用题叫做归一问题。【数量关系】 总量份数1份数量 1份数量所占份数所求几份的数量 另一总量总量份数所求份数【解题思路和方法】 先求出
3、单一量,以单一量为标准,求出所要求的数量。例1 买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱?解1买1支铅笔多少钱? 0.650.12元2买16支铅笔需要多少钱?0.12161.92元 列成综合算式 0.65160.12161.92元 答:需要1.92元。例2 3台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6 天耕地多少公顷? 解11台拖拉机1天耕地多少公顷? 903310公顷 25台拖拉机6天耕地多少公顷? 1056300公顷列成综合算式 9033561030300公顷 答:5台拖拉机6 天耕地300公顷。例3 5辆汽车4次可以运送100吨钢材,如果用同样的7辆汽车运送105吨
4、钢材,需要运几次? 解 11辆汽车1次能运多少吨钢材? 100545吨 27辆汽车1次能运多少吨钢材? 5735吨3105吨钢材7辆汽车需要运几次? 105353次 列成综合算式 1051005473次 答:需要运3次。2 归总问题【含义】 解题时,常常先找出“总数量,然后再根据其它条件算出所求的问题,叫归总问题。所谓“总数量是指货物的总价、几小时几天的总工作量、几公亩地上的总产量、几小时行的总路程等。【数量关系】 1份数量份数总量 总量1份数量份数 总量另一份数另一每份数量【解题思路和方法】 先求出总数量,再根据题意得出所求的数量。例1 服装厂原来做一套衣服用布3.2米,改良裁剪方法后,每套
5、衣服用布2.8米。原来做791套衣服的布,现在可以做多少套?解 1这批布总共有多少米? 3.27912531.2米2现在可以做多少套? 2531.22.8904套列成综合算式 3.27912.8904套 答:现在可以做904套。例2 小华每天读24页书,12天读完了?红岩?一书。小明每天读36页书,几天可以读完?红岩??解 1?红岩?这本书总共多少页? 2412288页 2小明几天可以读完?红岩?? 288368天 列成综合算式 2412368天 答:小明8天可以读完?红岩?。例3 食堂运来一批蔬菜,原方案每天吃50千克,30天慢慢消费完这批蔬菜。后来根据大家的意见,每天比原方案多吃10千克,
6、这批蔬菜可以吃多少天?解 1这批蔬菜共有多少千克? 50301500千克2这批蔬菜可以吃多少天? 1500501025天列成综合算式 5030501015006025天 答:这批蔬菜可以吃25天。3 和差问题【含义】 两个数量的和与差,求这两个数量各是多少,这类应用题叫和差问题。【数量关系】大数和差 2 小数和差 2【解题思路和方法】 简单的题目可以直接套用公式;复杂的题目变通后再用公式。例1 甲乙两班共有学生98人,甲班比乙班多6人,求两班各有多少人? 解 甲班人数986252人 乙班人数986246人 答:甲班有52人,乙班有46人。例2 长方形的长和宽之和为18厘米,长比宽多2厘米,求长
7、方形的面积。 解 长182210厘米 宽18228厘米 长方形的面积 10880平方厘米 答:长方形的面积为80平方厘米。例3 有甲乙丙三袋化肥,甲乙两袋共重32千克,乙丙两袋共重30千克,甲丙两袋共重22千克,求三袋化肥各重多少千克。 解 甲乙两袋、乙丙两袋都含有乙,从中可以看出甲比丙多32302千克,且甲是大数,丙是小数。由此可知 甲袋化肥重量222212千克丙袋化肥重量222210千克 乙袋化肥重量321220千克答:甲袋化肥重12千克,乙袋化肥重20千克,丙袋化肥重10千克。例4 甲乙两车原来共装苹果97筐,从甲车取下14筐放到乙车上,结果甲车比乙车还多3筐,两车原来各装苹果多少筐?
8、解 “从甲车取下14筐放到乙车上,结果甲车比乙车还多3筐,这说明甲车是大数,乙车是小数,甲与乙的差是1423,甲与乙的和是97,因此 甲车筐数971423264筐 乙车筐数976433筐答:甲车原来装苹果64筐,乙车原来装苹果33筐。4 和倍问题【含义】 两个数的和及大数是小数的几倍或小数是大数的几分之几,要求这两个数各是多少,这类应用题叫做和倍问题。【数量关系】 总和 几倍1较小的数 总和 较小的数 较大的数 较小的数 几倍 较大的数【解题思路和方法】 简单的题目直接利用公式,复杂的题目变通后利用公式。例1 果园里有杏树和桃树共248棵,桃树的棵数是杏树的3倍,求杏树、桃树各多少棵? 解 1
9、杏树有多少棵? 2483162棵 2桃树有多少棵? 623186棵 答:杏树有62棵,桃树有186棵。例2 东西两个仓库共存粮480吨,东库存粮数是西库存粮数的1.4倍,求两库各存粮多少吨? 解 1西库存粮数4801.41200吨 2东库存粮数480200280吨 答:东库存粮280吨,西库存粮200吨。例3 甲站原有车52辆,乙站原有车32辆,假设每天从甲站开往乙站28辆,从乙站开往甲站24辆,几天后乙站车辆数是甲站的2倍?解 每天从甲站开往乙站28辆,从乙站开往甲站24辆,相当于每天从甲站开往乙站2824辆。把几天以后甲站的车辆数当作1倍量,这时乙站的车辆数就是2倍量,两站的车辆总数523
10、2就相当于21倍,那么,几天以后甲站的车辆数减少为 52322128辆所求天数为 522828246天 答:6天以后乙站车辆数是甲站的2倍。例4 甲乙丙三数之和是170,乙比甲的2倍少4,丙比甲的3倍多6,求三数各是多少?解 乙丙两数都与甲数有直接关系,因此把甲数作为1倍量。因为乙比甲的2倍少4,所以给乙加上4,乙数就变成甲数的2倍;又因为丙比甲的3倍多6,所以丙数减去6就变为甲数的3倍;这时17046就相当于123倍。那么, 甲数1704612328 乙数282452丙数283690 答:甲数是28,乙数是52,丙数是90。5 差倍问题【含义】 两个数的差及大数是小数的几倍或小数是大数的几分
11、之几,要求这两个数各是多少,这类应用题叫做差倍问题。【数量关系】 两个数的差几倍1较小的数 较小的数几倍较大的数【解题思路和方法】 简单的题目直接利用公式,复杂的题目变通后利用公式。例1 果园里桃树的棵数是杏树的3倍,而且桃树比杏树多124棵。求杏树、桃树各多少棵? 解 1杏树有多少棵? 1243162棵 2桃树有多少棵? 623186棵答:果园里杏树是62棵,桃树是186棵。例2 爸爸比儿子大27岁,今年,爸爸的年龄是儿子年龄的4倍,求父子二人今年各是多少岁? 解 1儿子年龄27419岁 2爸爸年龄9436岁 答:父子二人今年的年龄分别是36岁和9岁。例3 商场改革经营管理方法后,本月盈利比
12、上月盈利的2倍还多12万元,又知本月盈利比上月盈利多30万元,求这两个月盈利各是多少万元? 解 如果把上月盈利作为1倍量,那么3012万元就相当于上月盈利的21倍,因此 上月盈利30122118万元 本月盈利183048万元答:上月盈利是18万元,本月盈利是48万元。例4 粮库有94吨小麦和138吨玉米,如果每天运出小麦和玉米各是9吨,问几天后剩下的玉米是小麦的3倍? 解 由于每天运出的小麦和玉米的数量相等,所以剩下的数量差等于原来的数量差13894。把几天后剩下的小麦看作1倍量,那么几天后剩下的玉米就是3倍量,那么,13894就相当于31倍,因此 剩下的小麦数量138943122吨 运出的小
13、麦数量942272吨 运粮的天数7298天答:8天以后剩下的玉米是小麦的3倍。6 倍比问题【含义】 有两个的同类量,其中一个量是另一个量的假设干倍,解题时先求出这个倍数,再用倍比的方法算出要求的数,这类应用题叫做倍比问题。【数量关系】总量一个数量倍数另一个数量倍数另一总量【解题思路和方法】 先求出倍数,再用倍比关系求出要求的数。例1 100千克油菜籽可以榨油40千克,现在有油菜籽3700千克,可以榨油多少?解 13700千克是100千克的多少倍? 370010037倍 2可以榨油多少千克?40371480千克 列成综合算式 4037001001480千克 答:可以榨油1480千克。例2 今年植
14、树节这天,某小学300名师生共植树400棵,照这样计算,全县48000名师生共植树多少棵?解 148000名是300名的多少倍? 48000300160倍2共植树多少棵?40016064000棵 列成综合算式 4004800030064000棵 答:全县48000名师生共植树64000棵。例3 凤翔县今年苹果大丰收,田家庄一户人家4亩果园收入11111元,照这样计算,全乡800亩果园共收入多少元?全县16000亩果园共收入多少元?解 1800亩是4亩的几倍? 8004200倍 2800亩收入多少元? 111112002222200元316000亩是800亩的几倍? 1600080020倍416
15、000亩收入多少元? 22222002044444000元 答:全乡800亩果园共收入2222200元, 全县16000亩果园共收入44444000元。7 相遇问题【含义】 两个运动的物体同时由两地出发相向而行,在途中相遇。这类应用题叫做相遇问题。【数量关系】 相遇时间总路程甲速乙速 总路程甲速乙速相遇时间【解题思路和方法】 简单的题目可直接利用公式,复杂的题目变通后再利用公式。例1 南京到上海的水路长392千米,同时从两港各开出一艘轮船相对而行,从南京开出的船每小时行28千米,从上海开出的船每小时行21千米,经过几小时两船相遇? 解 39228218小时 答:经过8小时两船相遇。例2 小李和
16、小刘在周长为400米的环形跑道上跑步,小李每秒钟跑5米,小刘每秒钟跑3米,他们从同一地点同时出发,反向而跑,那么,二人从出发到第二次相遇需多长时间? 解 “第二次相遇可以理解为二人跑了两圈。因此总路程为4002 相遇时间400253100秒 答:二人从出发到第二次相遇需100秒时间。例3 甲乙二人同时从两地骑自行车相向而行,甲每小时行15千米,乙每小时行13千米,两人在距中点3千米处相遇,求两地的距离。 解 “两人在距中点3千米处相遇是正确理解此题题意的关键。从题中可知甲骑得快,乙骑得慢,甲过了中点3千米,乙距中点3千米,就是说甲比乙多走的路程是32千米,因此,相遇时间3215133小时 两地
17、距离1513384千米 答:两地距离是84千米。8 追及问题【含义】 两个运动物体在不同地点同时出发或者在同一地点而不是同时出发,或者在不同地点又不是同时出发作同向运动,在后面的,行进速度要快些,在前面的,行进速度较慢些,在一定时间之内,后面的追上前面的物体。这类应用题就叫做追及问题。【数量关系】 追及时间追及路程快速慢速追及路程快速慢速追及时间【解题思路和方法】 简单的题目直接利用公式,复杂的题目变通后利用公式。例1 好马每天走120千米,劣马每天走75千米,劣马先走12天,好马几天能追上劣马?解 1劣马先走12天能走多少千米? 7512900千米2好马几天追上劣马? 9001207520天
18、列成综合算式 7512120759004520天 答:好马20天能追上劣马。例2 小明和小亮在200米环形跑道上跑步,小明跑一圈用40秒,他们从同一地点同时出发,同向而跑。小明第一次追上小亮时跑了500米,求小亮的速度是每秒多少米。解 小明第一次追上小亮时比小亮多跑一圈,即200米,此时小亮跑了500200米,要知小亮的速度,须知追及时间,即小明跑500米所用的时间。又知小明跑200米用40秒,那么跑500米用40500200秒,所以小亮的速度是500200405002003001003米 答:小亮的速度是每秒3米。例3 我人民解放军追击一股逃窜的敌人,敌人在下午16点开始从甲地以每小时10千
19、米的速度逃跑,解放军在晚上22点接到命令,以每小时30千米的速度开始从乙地追击。甲乙两地相距60千米,问解放军几个小时可以追上敌人?解 敌人逃跑时间与解放军追击时间的时差是2216小时,这段时间敌人逃跑的路程是10226千米,甲乙两地相距60千米。由此推知 追及时间10226603010 2202011小时 答:解放军在11小时后可以追上敌人。例4 一辆客车从甲站开往乙站,每小时行48千米;一辆货车同时从乙站开往甲站,每小时行40千米,两车在距两站中点16千米处相遇,求甲乙两站的距离。解 这道题可以由相遇问题转化为追及问题来解决。从题中可知客车落后于货车162千米,客车追上货车的时间就是前面所
20、说的相遇时间,这个时间为16248404小时所以两站间的距离为 48404352千米列成综合算式 48401624840 884 352千米 答:甲乙两站的距离是352千米。例5兄妹二人同时由家上学,哥哥每分钟走90米,妹妹每分钟走60米。哥哥到校门口时发现忘记带课本,立即沿原路回家去取,行至离校180米处和妹妹相遇。问他们家离学校有多远?解 要求距离,速度,所以关键是求出相遇时间。从题中可知,在相同时间从出发到相遇内哥哥比妹妹多走1802米,这是因为哥哥比妹妹每分钟多走9060米,那么,二人从家出走到相遇所用时间为 1802906012分钟 家离学校的距离为 9012180900米 答:家离
21、学校有900米远。例6 孙亮打算上课前5分钟到学校,他以每小时4千米的速度从家步行去学校,当他走了1千米时,发现手表慢了10分钟,因此立即跑步前进,到学校恰好准时上课。后来算了一下,如果孙亮从家一开始就跑步,可比原来步行早9分钟到学校。求孙亮跑步的速度。解 手表慢了10分钟,就等于晚出发10分钟,如果按原速走下去,就要迟到105分钟,后段路程跑步恰准时到学校,说明后段路程跑比走少用了105分钟。如果从家一开始就跑步,可比步行少9分钟,由此可知,行1千米,跑步比步行少用9105分钟。所以步行1千米所用时间为 191050.25小时15分钟跑步1千米所用时间为 15910511分钟跑步速度为每小时
22、 111605.5千米答:孙亮跑步速度为每小时 5.5千米。第一段路 1千米 那么第2段路上 走路的话会迟到10-5=5分钟 跑步刚好 说明第2段路跑步比走路快了5分钟而一开始就跑步可以快9分钟 那就是说原来1千米快了4分钟 走路是4千米每小时 用掉15分钟了 跑步就是用掉11分钟 那么1/11就是每分钟多少千米了 多简单求采纳 求好评还有别说我的答案错了 我只是没把小时=60分钟乘进去!你10千米每小时 你算一下 1千米时6分钟 有木有? 走路时15分钟 有木有?你已经节约了9分钟!你怎么从家到学校跑步比走路快9分钟?难道家离学校就是1千米么?有木有?你错了!有木有!你傻了!有木有?对了 看
23、了下你的方程!你的X是跑步的还是走路的?我靠 X-1/4z是什么?假设X是跑步总时间!那应该是(X-1/z)z+1=y !你怎么不直接XZ=y?假设X是走路总时间那么是(X-1/4)*4+1=y。你怎么不4X=y?这就是你所谓的方程。有木有?第2条我更迷茫了,你是迷茫哥还是我是还是5小家伙是?有木有!我的改一下就对了:X/4-X/Y*60=9;【(X-1)/Y-(X-1)/4】*60=59 植树问题【含义】 按相等的距离植树,在距离、棵距、棵数这三个量之间,其中的两个量,要求第三个量,这类应用题叫做植树问题。【数量关系】线形植树 棵数距离棵距1环形植树 棵数距离棵距方形植树 棵数距离棵距4 三
24、角形植树 棵数距离棵距3 面积植树 棵数面积棵距行距【解题思路和方法】 先弄清楚植树问题的类型,然后可以利用公式。例1 一条河堤136米,每隔2米栽一棵垂柳,头尾都栽,一共要栽多少棵垂柳? 解 1362168169棵 答:一共要栽69棵垂柳。例2 一个圆形池塘周长为400米,在岸边每隔4米栽一棵白杨树,一共能栽多少棵白杨树? 解 4004100棵 答:一共能栽100棵白杨树。例3 一个正方形的运动场,每边长220米,每隔8米安装一个照明灯,一共可以安装多少个照明灯?解 2204841104106个 答:一共可以安装106个照明灯。例4 给一个面积为96平方米的住宅铺设地板砖,所用地板砖的长和宽
25、分别是60厘米和40厘米,问至少需要多少块地板砖? 解 960.60.4960.24400块 答:至少需要400块地板砖。例5 一座大桥长500米,给桥两边的电杆上安装路灯,假设每隔50米有一个电杆,每个电杆上安装2盏路灯,一共可以安装多少盏路灯?解 1桥的一边有多少个电杆? 50050111个 2桥的两边有多少个电杆? 11222个 3大桥两边可安装多少盏路灯?22244盏 答:大桥两边一共可以安装44盏路灯。10 年龄问题【含义】 这类问题是根据题目的内容而得名,它的主要特点是两人的年龄差不变,但是,两人年龄之间的倍数关系随着年龄的增长在发生变化。【数量关系】年龄问题往往与和差、和倍、差倍
26、问题有着密切联系,尤其与差倍问题的解题思路是一致的,要紧紧抓住“年龄差不变这个特点。【解题思路和方法】 可以利用“差倍问题的解题思路和方法。例1 爸爸今年35岁,亮亮今年5岁,今年爸爸的年龄是亮亮的几倍?明年呢? 解 3557倍 35+15+16倍答:今年爸爸的年龄是亮亮的7倍,明年爸爸的年龄是亮亮的6倍。例2 母亲今年37岁,女儿今年7岁,几年后母亲的年龄是女儿的4倍?解 1母亲比女儿的年龄大多少岁? 37730岁 2几年后母亲的年龄是女儿的4倍?304173年 列成综合算式 3774173年 答:3年后母亲的年龄是女儿的4倍。例3 3年前父子的年龄和是49岁,今年父亲的年龄是儿子年龄的4倍
27、,父子今年各多少岁?解 今年父子的年龄和应该比3年前增加32岁, 今年二人的年龄和为493255岁把今年儿子年龄作为1倍量,那么今年父子年龄和相当于41倍,因此,今年儿子年龄为 554111岁 今年父亲年龄为 11444岁 答:今年父亲年龄是44岁,儿子年龄是11岁。例4 甲对乙说:“当我的岁数曾经是你现在的岁数时,你才4岁。乙对甲说:“当我的岁数将来是你现在的岁数时,你将61岁。求甲乙现在的岁数各是多少?解:这里涉及到三个年份:过去某一年、今年、将来某一年。列表分析:过去某一年今 年将来某一年 甲 岁岁 61岁 乙 4岁岁 岁表中两个“表示同一个数,两个“表示同一个数。因为两个人的年龄差总相
28、等:461,也就是4,61成等差数列,所以,61应该比4大3个年龄差, 因此二人年龄差为614319岁 甲今年的岁数为611942岁 乙今年的岁数为 421923岁 答:甲今年的岁数是42岁,乙今年的岁数是23岁。11 行船问题【含义】 行船问题也就是与航行有关的问题。解答这类问题要弄清船速与水速,船速是船只本身航行的速度,也就是船只在静水中航行的速度;水速是水流的速度,船只顺水航行的速度是船速与水速之和;船只逆水航行的速度是船速与水速之差。【数量关系】 顺水速度逆水速度2船速 顺水速度逆水速度2水速顺水速船速2逆水速逆水速水速2 逆水速船速2顺水速顺水速水速2【解题思路和方法】 大多数情况可
29、以直接利用数量关系的公式。例1 一只船顺水行320千米需用8小时,水流速度为每小时15千米,这只船逆水行这段路程需用几小时?解 由条件知,顺水速船速水速3208,而水速为每小时15千米,所以,船速为每小时 32081525千米 船的逆水速为 251510千米船逆水行这段路程的时间为 3201032小时 答:这只船逆水行这段路程需用32小时。例2 甲船逆水行360千米需18小时,返回原地需10小时;乙船逆水行同样一段距离需15小时,返回原地需多少时间?解由题意得 甲船速水速3601036 甲船速水速3601820可见 3620相当于水速的2倍,所以, 水速为每小时 362028千米 又因为, 乙
30、船速水速36015, 所以, 乙船速为 36015832千米乙船顺水速为 32840千米 所以, 乙船顺水航行360千米需要 360409小时 答:乙船返回原地需要9小时。例3 一架飞机飞行在两个城市之间,飞机的速度是每小时576千米,风速为每小时24千米,飞机逆风飞行3小时到达,顺风飞回需要几小时?解 这道题可以按照流水问题来解答。 1两城相距多少千米? 5762431656千米2顺风飞回需要多少小时? 1656576242.76小时 列成综合算式576243576242.76小时 答:飞机顺风飞回需要2.76小时。12 列车问题【含义】 这是与列车行驶有关的一些问题,解答时要注意列车车身的
31、长度。【数量关系】 火车过桥:过桥时间车长桥长车速火车追及: 追及时间甲车长乙车长距离甲车速乙车速火车相遇: 相遇时间甲车长乙车长距离甲车速乙车速【解题思路和方法】 大多数情况可以直接利用数量关系的公式。例1 一座大桥长2400米,一列火车以每分钟900米的速度通过大桥,从车头开上桥到车尾离开桥共需要3分钟。这列火车长多少米?解 火车3分钟所行的路程,就是桥长与火车车身长度的和。 1火车3分钟行多少米? 90032700米 2这列火车长多少米? 27002400300米 列成综合算式 90032400300米 答:这列火车长300米。例2 一列长200米的火车以每秒8米的速度通过一座大桥,用了
32、2分5秒钟时间,求大桥的长度是多少米?解 火车过桥所用的时间是2分5秒125秒,所走的路程是8125米,这段路程就是200米桥长,所以,桥长为 8125200800米答:大桥的长度是800米。例3 一列长225米的慢车以每秒17米的速度行驶,一列长140米的快车以每秒22米的速度在后面追赶,求快车从追上到追过慢车需要多长时间?解 从追上到追过,快车比慢车要多行225140米,而快车比慢车每秒多行2217米,因此,所求的时间为 225140221773秒 答:需要73秒。例4 一列长150米的列车以每秒22米的速度行驶,有一个扳道工人以每秒3米的速度迎面走来,那么,火车从工人身旁驶过需要多少时间
33、?解 如果把人看作一列长度为零的火车,原题就相当于火车相遇问题。 1502236秒答:火车从工人身旁驶过需要6秒钟。例5 一列火车穿越一条长2000米的隧道用了88秒,以同样的速度通过一条长1250米的大桥用了58秒。求这列火车的车速和车身长度各是多少?解 车速和车长都没有变,但通过隧道和大桥所用的时间不同,是因为隧道比大桥长。可知火车在8858秒的时间内行驶了20001250米的路程,因此,火车的车速为每秒 20001250885825米 进而可知,车长和桥长的和为2558米, 因此,车长为25581250200米 答:这列火车的车速是每秒25米,车身长200米。13 时钟问题【含义】 就是
34、研究钟面上时针与分针关系的问题,如两针重合、两针垂直、两针成一线、两针夹角为60度等。时钟问题可与追及问题相类比。【数量关系】 分针的速度是时针的12倍, 二者的速度差为11/12。 通常按追及问题来对待,也可以按差倍问题来计算。【解题思路和方法】 变通为“追及问题后可以直接利用公式。例1 从时针指向4点开始,再经过多少分钟时针正好与分针重合?解 钟面的一周分为60格,分针每分钟走一格,每小时走60格;时针每小时走5格,每分钟走5/601/12格。每分钟分针比时针多走11/1211/12格。4点整,时针在前,分针在后,两针相距20格。所以分针追上时针的时间为 2011/12 22分 答:再经过
35、22分钟时针正好与分针重合。例2 四点和五点之间,时针和分针在什么时候成直角?解 钟面上有60格,它的1/4是15格,因而两针成直角的时候相差15格包括分针在时针的前或后15格两种情况。四点整的时候,分针在时针后54格,如果分针在时针后与它成直角,那么分针就要比时针多走 5415格,如果分针在时针前与它成直角,那么分针就要比时针多走5415格。再根据1分钟分针比时针多走11/12格就可以求出二针成直角的时间。 541511/12 6分 541511/12 38分 答:4点06分及4点38分时两针成直角。例3 六点与七点之间什么时候时针与分针重合?解 六点整的时候,分针在时针后56格,分针要与时
36、针重合,就得追上时针。这实际上是一个追及问题。5611/12 33分答:6点33分的时候分针与时针重合。14 盈亏问题【含义】 根据一定的人数,分配一定的物品,在两次分配中,一次有余盈,一次缺乏亏,或两次都有余,或两次都缺乏,求人数或物品数,这类应用题叫做盈亏问题。【数量关系】 一般地说,在两次分配中,如果一次盈,一次亏,那么有: 参加分配总人数盈亏分配差如果两次都盈或都亏,那么有:参加分配总人数大盈小盈分配差参加分配总人数大亏小亏分配差【解题思路和方法】 大多数情况可以直接利用数量关系的公式。例1 给幼儿园小朋友分苹果,假设每人分3个就余11个;假设每人分4个就少1个。问有多少小朋友?有多少个苹果?解 按照“参加分配的总人数盈亏分配差的数量关系:1有小朋友多少人? 1114312人2有多少个苹果? 3121147个答:有小朋友12人,有47个苹果。例2 修一条公路,如果每天修260米,修完全长就得延长8天;如果每天修300米,修完全长