二次函数的图像第一课时.ppt

上传人:仙*** 文档编号:19522055 上传时间:2022-06-08 格式:PPT 页数:31 大小:1.93MB
返回 下载 相关 举报
二次函数的图像第一课时.ppt_第1页
第1页 / 共31页
二次函数的图像第一课时.ppt_第2页
第2页 / 共31页
点击查看更多>>
资源描述

《二次函数的图像第一课时.ppt》由会员分享,可在线阅读,更多相关《二次函数的图像第一课时.ppt(31页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、二次函数二次函数 的图象和性质的图象和性质2axy x x -3-3 -2 -2 -1 -10 01 12 23 3y y解解:(1) :(1) 列表列表9 94 41 10 01 14 49 9(2) (2) 描点描点(3) (3) 连线连线1 2 3 4 5x12345678910yo-1-2-3-4-5y=x2 2画最简单的二次函数画最简单的二次函数 y = x2 的图象的图象 你还记得描点你还记得描点法的一般步骤法的一般步骤? ?注意:列表时自变量注意:列表时自变量取值要均匀和对称。取值要均匀和对称。 列表列表描点描点连线连线描点时应以哪些数描点时应以哪些数值作为点的坐标?值作为点的坐

2、标?连线时应注意连线时应注意什么问题?什么问题?用用光滑曲线连结要光滑曲线连结要自左向右顺次结自左向右顺次结2xy 二次函数二次函数y=x2的图象的图象形如物体抛形如物体抛射时所经过射时所经过的路线的路线,我们我们把它叫做把它叫做抛抛物线物线这条抛物线关于这条抛物线关于y轴对称轴对称,y轴就轴就 是它的对称轴是它的对称轴. 对称轴与抛物对称轴与抛物线的交点叫做线的交点叫做抛物线的顶点抛物线的顶点. 议一议议一议(2)图象与y轴有交点吗?如果有,交点坐标是什么?(4)当x0呢?(3)当x取什么值时,y的值最小?最小值是什么? 你是如何知道的?观察图象,回答问题:2xy xyO(1)图象是轴对称图

3、形吗?如果是,它的对称轴是什么?请你找出几对对称点?x x -4-4-3-3-2 -2 -1 -10 01 1 2 23 34 4y= xy= x2 2在同一直角坐标系中画出函数在同一直角坐标系中画出函数y= = x2 2和和y=2=2x2 2的图象的图象解解: (1) : (1) 列表列表(2) (2) 描点描点(3) (3) 连线连线1 2 3 4 5x12345678910yo-1-2-3-4-51 12 28 82 2 0.50.5 0 00.50.5 2 24.54.58 84.54.51 12 22yx212yx22yxxy=2xy=2x2 2-2-1.5-1-0.500.511.

4、5284.520.500.524.581 2 3 4 5x12345678910yo-1-2-3-4-5 函数函数y= = x2 2, ,y=2=2x2 2的图的图象象与函数与函数y=x2 2( (图中虚线图形图中虚线图形) )的图的图象象相比相比, ,有什么共同点有什么共同点和不同点和不同点? ?1 12 2共同点共同点: :不同点不同点: :(1 1)形状:抛物线。)形状:抛物线。(3 3)顶点)顶点:(:(0,00,0),而且是,而且是抛物线的最低点。抛物线的最低点。开口大小不同开口大小不同; ;2yx212yx22yxa越大,越大,在对称轴的左侧,在对称轴的左侧,y y随着随着x x的

5、的增大增大而而减小。减小。在对称轴的右侧,在对称轴的右侧,y y随着随着x x的的增大增大而而增大增大。抛物线的开口越小抛物线的开口越小。(5 5)增减性:)增减性:(4 4)对称轴:)对称轴: y y 轴。轴。(2 2)开口方向:向上。)开口方向:向上。(6 6)最值:当)最值:当x=0 x=0时,时,y y取得最小值取得最小值0 0。(1)(1)二次函数二次函数y=-y=-x2 2的图象是什么形状?的图象是什么形状? 做一做做一做你能根据表格中的数据作出你能根据表格中的数据作出猜想吗猜想吗?(2)(2)先想一想,然后作出它的图象先想一想,然后作出它的图象(3)(3)它与二次函数它与二次函数

6、y=x2的图象有什么关系?的图象有什么关系?xy=-x x2 2x-3-2-10123y=-x x2 2x -9-9-4-4-1-10 0-1-1-4-4-9-9在学中做在做中学做一做做一做xy0 0-4-3-2-11234-10-8-6-4-22-1描点描点, ,连线连线y=-=-x2 2?2xy 当当x0 (在对称轴在对称轴的右侧的右侧)时时, y随着随着x的增大而减小的增大而减小. y 当当x= -2时时,y= -4 当当x= -1时时,y= -1当当x=1时时,y= -1当当x= 2时时,y= -4抛物线抛物线y= -x2在在x轴的轴的下方下方(除顶点外除顶点外),顶点顶点是它的最高点

7、是它的最高点,开口开口向下向下,并且向下无限并且向下无限伸展伸展;当当x=0时时,函数函数y的值最大的值最大,最大值是最大值是0.探究探究 画出函数画出函数 的图象的图象2222,21,xyxyxyx1y解解: (1) : (1) 列表列表(2) (2) 描点描点(3) (3) 连线连线x x-2-2-1.5-1.5-1 -1 -0.5-0.50 00.50.51 11.51.52 2y=y=x x2 2y=y=x x2 2y=y=2x2x2 21 12 2-2.25-0.25-0.25-2.25-2-2-.-.- -. .- -. .- -. .-.-.-.-4. 5-4. 5-1-2-30

8、123-1-2-3-4-52xy221xy 22xy x1y-1-2-30123-1-2-3-4-5 函数函数y= x2 2, ,y=2 2x2 2的图象与函数的图象与函数y=x2 2( (图中蓝线图形图中蓝线图形) )的图象相比的图象相比, ,有什么共同点和不同点有什么共同点和不同点? ?1 12 2共同点共同点: :(2 2)开口方向:向下。)开口方向:向下。不同点不同点: :开口大小不同开口大小不同; ;|a|a| 越大,越大,221xy 2xy22xy 在对称轴的左侧,在对称轴的左侧,y y随着随着x x的的增大而增大而增大增大。在对称轴的右侧,在对称轴的右侧,y y随着随着x x的增

9、大而减小的增大而减小。抛物线的开口越小抛物线的开口越小(4 4)对称轴:)对称轴:y y 轴轴(3 3)顶点)顶点:(:(0,00,0),),而且是抛物线的最高点。而且是抛物线的最高点。(1 1)形状:抛物线。)形状:抛物线。(5 5)增减性:)增减性:(6 6)最值:当)最值:当x=0 x=0时,时,y y取得最大值取得最大值0 0。y=ax2 (a0)a0a0图图象象开口方向开口方向顶点坐标顶点坐标对称轴对称轴增增减减性性极值极值xyOyxO向上向上向下向下(0 ,0)(0 ,0)y轴y轴当当x0时,时,y随着随着x的增大而减小。的增大而减小。当当x0 x0时,时,y y随着随着x x的增

10、大而的增大而增大增大。当当x0时,时,y随着随着x的增大而减小。的增大而减小。抛物线的开口就越小抛物线的开口就越小. |a|越小越小, 抛物线的开口就越大抛物线的开口就越大.对比抛物线,对比抛物线,y=x2和和y=x2.它它们关于们关于x轴对称吗?轴对称吗?一般地,抛物线一般地,抛物线y=ax2和和y=ax2呢?呢?在同一坐标系内在同一坐标系内,抛物线抛物线 与与抛物线抛物线 是关于是关于x轴对称的轴对称的.2axy 2axy 2xy2xy22xy232xy 根据左边已画好的函数图象填空根据左边已画好的函数图象填空:(1)抛物线)抛物线y=2x2的顶点坐标是的顶点坐标是 ,对称轴是对称轴是 ,

11、在,在 侧,侧,y随着随着x的增大而增大;在的增大而增大;在 侧,侧,y随着随着x的增大而减小,当的增大而减小,当x= 时,时,函数函数y的值最小,最小值是的值最小,最小值是 ,抛物抛物线线y=2x2在在x轴的轴的 方(除顶点外)。方(除顶点外)。(2)抛物线)抛物线 在在x轴的轴的 方(除顶点外),在对称轴的方(除顶点外),在对称轴的左侧,左侧,y随着随着x的的 ;在对称轴的右侧,;在对称轴的右侧,y随着随着x的的 ,当,当x=0时,函数时,函数y的值最大,最大值是的值最大,最大值是 ,当当x 0时,时,y0.232xy(0,0)y轴轴对称轴的右对称轴的右对称轴的左对称轴的左00上上下下增大

12、而增大增大而增大增大而减小增大而减小023xy抛物线练习1、函数 的图象是,开口方向 ,对称轴是轴。顶点坐标,x0时,函数值y随增大而 ,x0时,函数值随增大而 ,x= 时,有最值是。下(0,0)减小 增大0大0y2、抛物线的开口向上对称轴是y轴,顶点在坐标原点和上面1题的形状大小一样,它的解析式是x0时,函数值y随增大而 ,x0时,函数值随增大而 ,x= 时,有最值是 23xy 减小 增大00小4、已知抛物线、已知抛物线y=ax2经过点经过点A(-2,-8)。)。 (1)求此抛物线的函数解析式;)求此抛物线的函数解析式; (2)判断点)判断点B(-1,- 4)是否在此抛物线上。)是否在此抛物

13、线上。 (3)求出此抛物线上纵坐标为)求出此抛物线上纵坐标为-6的点的坐标。的点的坐标。解(解(1)把()把(-2,-8)代入)代入y=ax2,得得-8=a(-2)2,解出解出a= -2,所求函数解析式为所求函数解析式为y= -2x2.(2)因为)因为 ,所以点,所以点B(-1 ,-4)不在此抛物线上。不在此抛物线上。2) 1(24(3)由)由-6=-2x2 ,得得x2=3, 所以纵坐标为所以纵坐标为-6的点有两个,它们分别是的点有两个,它们分别是 3x)6, 3()6, 3(与 2、已知二次函数、已知二次函数 的图象经的图象经过点过点(-2,-3)。(1)求求a的值,并写出函数解析式;的值,

14、并写出函数解析式;(2)说出函数图象的顶点坐标、对称轴、说出函数图象的顶点坐标、对称轴、开口方向和图象的位置;开口方向和图象的位置;2axy 巩固巩固例例1 1: 已知函数已知函数 , , ,的图象如图所示。的图象如图所示。 (1)抛物线)抛物线分别对应哪个函数?分别对应哪个函数?221xy 2xy 221xy2xyxy2xy 221xy 221xy2xy例例1. 1. 在同一直角坐标系中在同一直角坐标系中, ,画出二次函数画出二次函数y=xy=x2 2+1+1和和y=xy=x2 2 1 1的图象的图象解解: :先列表先列表x x-3-3-2 -2 -1 -10 01 1 2 23 3y=xy

15、=x2 2+1+1y=xy=x2 2-1 -110105 52 21 12 25 510108 83 30 0-1 -10 03 38 8然后描点然后描点, ,连线连线, ,得到得到y=xy=x2 21,1,y=xy=x2 21 1的图像的图像. .1 2 3 4 5x12345678910yo-1-2-3-4-5y=xy=x2 2+1+1y=xy=x2 21 1(1) (1) 抛物线抛物线y=xy=x2 2+1,y=x+1,y=x2 21 1的开口方向、对的开口方向、对称轴、顶点各是称轴、顶点各是什么什么? ?抛物线抛物线y=xy=x2 2+1:+1:开口向上开口向上, ,顶点为顶点为(0,

16、1).(0,1).对称轴是对称轴是y y轴轴, ,抛物线抛物线y=xy=x2 21:1:开口向上开口向上, ,顶点为顶点为(0, (0, 1).1).对称轴是对称轴是y y轴轴, ,1 2 3 4 5x12345678910yo-1-2-3-4-5y=xy=x2 2+1+1y=xy=x2 21 1(2)(2)抛物线抛物线y=xy=x2 2+1,y=x+1,y=x2 21 1与抛物线与抛物线y=xy=x2 2的异同点的异同点: :1 2 3 4 5x12345678910yo-1-2-3-4-5y=xy=x2 2+1+1抛物线抛物线y=xy=x2 2抛物线抛物线 y=xy=x2 21 1向向上上

17、平移平移1 1个单位个单位抛物线抛物线y=xy=x2 2向向下下平移平移1 1个单位个单位y=xy=x2 21 1y=xy=x2 2抛物线抛物线 y=xy=x2 2+ +1 1相同点:相同点:形状大小相同形状大小相同开口方向相同开口方向相同对称轴相同对称轴相同不同点:不同点: 顶点的位置不同,顶点的位置不同,抛物线的位置也不抛物线的位置也不同同一般地一般地, ,抛物线抛物线y=axy=ax2 2+c+c有如下特点有如下特点: :(1)(1)对称轴是对称轴是y y轴轴; ;(2)(2)顶点是顶点是(0,c).(0,c).1 2 3 4 5x12345678910yo-1-2-3-4-5(3)(3

18、)抛物线的开口方向由抛物线的开口方向由a a的符号决定的符号决定抛物线抛物线y= x2向下平移个单位后,所得向下平移个单位后,所得抛物线为抛物线为,再向上平移个单位再向上平移个单位后,所得抛物线为后,所得抛物线为.1 12 2y= x21 12 2y= x21 12 2归纳与小结归纳与小结二次函数二次函数y = ax2+k的性质的性质:(1)开口方向:)开口方向:当当a0时,开口向上时,开口向上;当当a0时,开口向下;时,开口向下;(2)对称轴:)对称轴:y轴轴(3)顶点坐标:)顶点坐标: 顶点坐标是(顶点坐标是(0,k)(4)函数的增减性:)函数的增减性:当当a0时,时,对称轴左侧对称轴左侧

19、y随随x增大而减小,增大而减小,对称轴右侧对称轴右侧y随随x增大而增大;增大而增大;当当a0时,时,对称轴左侧对称轴左侧y随随x增大而增大,增大而增大,对称轴右侧对称轴右侧y随随x增大而减小。增大而减小。|a|越大开口越小,反之开口越大。越大开口越小,反之开口越大。课堂练习课堂练习: 2、课本第十页练习、课本第十页练习 1、 把抛物线把抛物线y=2x2向上平移向上平移5个单位,会得到哪条个单位,会得到哪条抛物线?向下平移抛物线?向下平移3.4个单位呢?个单位呢?思考思考 y=x2和和y=-x2的图像有什么关系的图像有什么关系?知识回顾知识回顾1、画抛物线的图像有几步?2、抛物线中的中的a决定什

20、么?决定什么?怎样决定的?怎样决定的?k决定什么?它的对称轴决定什么?它的对称轴是什么?顶点坐标怎样表示?是什么?顶点坐标怎样表示?练习练习1.把抛物线把抛物线 向下平移向下平移2个单位,可以得个单位,可以得到抛物线到抛物线 ,再向上平移,再向上平移5个单位,个单位,可以得到抛物线可以得到抛物线 ;2.对于函数对于函数y= x2+1,当,当x 时,函数值时,函数值y随随x的增大而增大;当的增大而增大;当x 时,函数值时,函数值y随随x的的增大而减小;当增大而减小;当x 时,函数取得最时,函数取得最 值值,为为 。221xy 2212xy3212xy00=0大大13.函数函数y=3x2+5与与y=3x2的图象的不同之处是的图象的不同之处是( )A.对称轴对称轴 B.开口方向开口方向 C.顶点顶点 D.形状形状4.已知抛物线已知抛物线y=2x21上有两点上有两点(x1,y1 ) ,(x2,y2 )且且x1x20,则,则y1 y2(填填“”或或“”)C

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 小学资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁