《汽车外文翻译分析解析(共9页).doc》由会员分享,可在线阅读,更多相关《汽车外文翻译分析解析(共9页).doc(9页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精选优质文档-倾情为你奉上驱动桥设计随着汽车对安全、节能、环保的不断重视,汽车后桥作为整车的一个关键部件,其产品的质量对整车的安全使用及整车性能的影响是非常大的,因而对汽车后桥进行有效的优化设计计算是非常必要的。驱动桥处于动力传动系的末端,其基本功能是增大由传动轴或变速器传来的转矩,并将动力合理地分配给左、右驱动轮,另外还承受作用于路面和车架或车身之间的垂直力力和横向力。驱动桥一般由主减速器、差速器、车轮传动装置和驱动桥壳等组成。驱动桥作为汽车四大总成之一,它的性能的好坏直接影响整车性能,而对于载重汽车显得尤为重要。驱动桥设计应当满足如下基本要求:1、符合现代汽车设计的一般理论。2、外形尺寸要
2、小,保证有必要的离地间隙。3、合适的主减速比,以保证汽车的动力性和燃料经济性。4、在各种转速和载荷下具有高的传动效率。5、在保证足够的强度、刚度条件下,力求质量小,结构简单,加工工艺性好,制造容易,拆装,调整方便。 6、与悬架导向机构运动协调,对于转向驱动桥,还应与转向机构运动协调。智能电子技术在汽车上得以推广使得汽车在安全行驶和其它功能更上一层楼。通过各种传感器实现自动驾驶。除些之外智能汽车装备有多种传感器能充分感知交通设施及环境的信息并能随时判断车辆及驾驶员是否处于危险之中,具备自主寻路、导航、避撞、不停车收费等功能。有效提高运输过程中的安全,减少驾驶员的操纵疲劳度,提高乘客的舒适度。当然
3、蓄电池是电动汽车的关键,电动汽车用的蓄电池主要有:铅酸蓄电池、镍镉蓄电池、钠硫蓄电池、钠硫蓄电池、锂电池、锌空气电池、飞轮电池、燃料电池和太阳能电池等。在诸多种电池中,燃料电池是迄今为止最有希望解决汽车能源短缺问题的动力源。燃料电池具有高效无污染的特性,不同于其他蓄电池,其不需要充电,只要外部不断地供给燃料,就能连续稳定地发电。燃料电池汽车(FCEV)具有可与内燃机汽车媲美的动力性能,在排放、燃油经济性方面明显优于内燃机车辆。 另外,设计必须得考虑所选择材料的可加工性能。一种材料的可机加工性通常以四种因素的方式定义: 1分的表面光洁性和表面完整性。2刀具的寿命。3切削力和功率的需求。4切屑控制
4、。以这种方式,好的可机加工性指的是好的表面光洁性和完整性,长的刀具寿命,低的切削力和功率需求。关于切屑控制,细长的卷曲切屑,如果没有被切割成小片,以在切屑区变的混乱,缠在一起的方式能够严重的介入剪切工序。因为剪切工序的复杂属性,所以很难建立定量地释义材料的可机加工性的关系。在制造厂里,刀具寿命和表面粗糙度通常被认为是可机加工性中最重要的因素。尽管已不再大量的被使用,近乎准确的机加工率在以下的例子中能够被看到。通常,零件的可机加工性能是根据以下因素来定义的:表面粗糙度,刀具的寿命,切削力和功率的需求以及切屑的控制。材料的可机加工性能不仅取决于起内在特性和微观结构,而且也依赖于工艺参数的适当选择与
5、控制。拖臂悬架结合起来的一种行为,semi-trailing-arm落后表现出轴。它是用来驱动的汽车前面。如果轴经验,它就像一卷悬垂态的手臂。扭转刚度的摩天大楼,这活象一个stabiliser酒吧。如果两个轮子的旅行经历相同的悬架(例如在球场的汽车)轴表现得像个拖臂悬架。梁式轴(Four-Link-Style) 前面的一辆汽车后轴,不必有相同的高度为他们的卷中心。辊轴轴线上,这是经过辊子的中心和后轴,看到前面的图。辊轴 如果一个横向力的重心,导致层(fom)上面的重心轴的卷必须补偿片刻所致。由于一些弹簧悬辊。这一刻之间分配方面和后桥有赖于相对弹簧刚度的前面,与后轴,整体侧倾角(这是一样的,和后
6、轴)取决于总和的悬架刚度(前加上后方)。传送到地面的瞬间,没有任何卷的整体车辆通过应用侧向力轴向前滚动的位置(在CG)。(注:如果滚动的轴,剩下的扭矩,CG必须补偿汽悬泉会像一辆摩托车内倾斜。这一幕的分布与后轴会,计算了分别计算各轴的位置,by-using相应的axle-using卷中心的一部分的事实,轮轴横向力所承受的一部分,与正常负荷、轮轴必须随身携带 不同的例子一个有限的特点,防滑差速器有点不同,不同的风格,一个自锁装置。这个Torsen风格差异;(从扭矩遥感)行为非常快(并可能严厉的)。在较低的输入扭矩的差动齿轮只是轻轻负载和移动,自由敞开的装置。随着力矩和速度起落架网格,大米和两个输
7、出轴锁在一起。扭矩比(high-torque-wheel除以low-torque-wheel)不等,2.5:1 max。7:1,Torsen II的风格,从3:1来1.8:1(根据齿轮,齿轮表面处理的角度,类型的滚子轴承(平原,)达纳Trac-Loclimited-slip差的(见图)包含一些预紧 通过弹簧离合器片、贝尔维尔)提供了一定的静态启动扭矩已经在零输入扭矩。蜘蛛齿轮,齿轮啮合侧设计那样(楔形齿),增加输入扭矩将增加的负担,提高离合器盘的锁轴。独立的粘性微分锁的扭矩,但反应速度与输出轴之间的差异。包括离合器片没有机械接触,但是很紧的间隙,使粘滞摩擦提供扭矩的转让。注意,粘稠的差距在很光
8、滑,有一定的时间延迟,作为粘度增加与所产生的热量(指的是特殊的液体是合宜的齿厚)。这使得操作容易使用汽车(虽然可以街是太慢了有些应用)。Design of driving axleAs the car to safety, energy saving, the constant attention to environmental protection, vehicle after vehicle bridge as a key component, the quality of their products on the safe use of cars and car performanc
9、e of a very large, so the car after Bridge Effectively optimize the design and calculation is very necessary. Drive Bridge at the end of powertrain, its basic function is to increase came from the drive shaft or transmission of torque and power reasonably allocated to the left and right driving whee
10、l and also bear in the role of the road and trailers or Body of power between the vertical and horizontal force. Drive from the main bridge general reducer, differential and the wheels, transmission and drive axle components, such as Shell. Bridge drive a vehicle with one of the four trains, its per
11、formance will have a direct impact on vehicle performance, and it is particularly important for the truck. Drive bridge should be designed to meet the following basic requirements: a) a suitable main slowdown than to ensure that the car from the best power and fuel economy. b) small form factor to e
12、nsure that the necessary ground clearance. c) transmission gears and other parts of a smooth, noise. d) in various load and speed of transmission with high efficiency. e) to ensure adequate strength, stiffness conditions, should strive for the quality of small, in particular the quality of the sprin
13、g as possible, to improve the car ride. f) suspension and body-oriented movement coordination, the drive to the bridge, should also be coordinated with the campaign steering mechanism. g) simple structure, processing technology and good, easy to manufacture, enables easy adjustment.Intelligent elect
14、ronic technology in the bus to promote safe driving and that the other functions. The realization of automatic driving through various sensors. Except some smart cars equipped with multiple outside sensors can fully perception of information and traffic facilities and to judge whether the vehicles a
15、nd drivers in danger, has the independent pathfinding, navigation, avoid bump, no parking fees etc. Function. Effectively improve the safe transport of manipulation, reduce the pilot fatigue, improve passenger comfort. Of course battery electric vehicle is the key, the electric car battery mainly ha
16、s: the use of lead-acid batteries, nickel cadmium battery, the battery, sodium sulfide sodium sulfide lithium battery, the battery, the battery, the flywheel zinc - air fuel cell and solar battery, the battery. In many kind of cells, the fuel cell is by far the most want to solve the problem of ener
17、gy shortage car. Fuel cells have high pollution characteristics, different from other battery, the battery, need not only external constantly supply of fuel and electricity can continuously steadily. Fuel cell vehicles (FCEV) can be matched with the car engine performance and fuel economy and emissi
18、on in the aspects of superior internal-combustion vehicles.Keyword: drive axle differential bridge reducer Bridge shellThis is an ANSYS optimum design for driving axle housing of a off-road vehicle. Firstly, the author established a three-dimensional model of the driving axle. States of stress in di
19、fferent working conditions were analyzed. Furthermore, the maximum pressure of driving axle was achieved.And then, the three-dimensional model was imported into ANSYS, with some other manipulations, such as meshing, adding degree of freedom, applying surface loads, etc. States of stress of driving a
20、xle were calculated with the results exported.Finally, this paper carried out the optimum design according to the target of minimizing the qualitative properties and homogenizing the distribution of stresses. The Confirmatory analysis showed that this design measured up to the engineering requiremen
21、t.MACHINABILITYThe machinability of a material usually defined in terms of four factors:1、 Surface finish and integrity of the machined part;2、 Tool life obtained;3、 Force and power requirements;4、 Chip control. Thus, good machinability good surface finish and integrity, long tool life, and low forc
22、e And power requirements. As for chip control, long and thin (stringy) cured chips, if not broken up, can severely interfere with the cutting operation by becoming entangled in the cutting zone.Because of the complex nature of cutting operations, it is difficult to establish relationships that quant
23、itatively define the machinability of a material. In manufacturing plants, tool life and surface roughness are generally considered to be the most important factors in machinability. Although not used much any more, approximate machinability ratings are available in the example below.SUMMARYMachinab
24、ility is usually defined in terms of surface finish, tool life, force and power requirements, and chip control. Machinability of materials depends not only on their intrinsic properties and microstructure, but also on proper selection and control of process variables.A combination of trailing- and s
25、emi-trailing-arm behaviour shows the following axis. It is used for front driven cars only. If the axle experiences roll, it behaves like a semi-trailing arm. The torsional stiffness counteracts the roll, by this acting like a stabiliser bar. If both wheels experience the same suspension travel (e.g
26、. during pitch of the car) the axle behaves like a trailing arm suspension.Beam Type Axle (Four-Link-Style) Front- and rear-axle of a car neednt have the same hight for their roll center. The roll axis is that axis, that goes through the roll center of front- and rear-axle, see following drawing:Rol
27、l AxisIf a lateral force is applied at the center of gravity, the moment resulting fom the hight of the center of gravity above the roll axis has to be compensated by a moment caused by the suspension springs due to some roll. The distribution of this moment between front- and rear axle depends on t
28、he relative spring stiffness of front- and rear-axle, the overall roll angle (which is the same for front- and rear-axle) depends on the sum of the suspension stiffness (front plus rear).The moment transmitted to the ground without any roll for the overall vehicle is given by the applied lateral for
29、ce times the roll axis hight (at the position of CG). (Remark: If the roll axis is above the CG, the remaining torque that has to be compensated by the suspension springs would make the car lean inside like a motorcycle!).The distribution of this moment between front- and rear-axle can be calculated
30、 by calculating each axle seperately, by-using the position of the roll center of the corresponding axle-using the fact that the part of lateral force, that the axle has to carry, corresponds to the part of the normal load, the axle has to carryDifferential ExamplesThe characteristics of a limited s
31、lip differential are a little bit different for different styles of a self-locking device. The Torsen style differentials (from TORque SENsing) act very fast (and possibly harsh). Under low input torque the differential gears are only lightly loaded and move freely like an open device. With increasi
32、ng torque (and speed) the gear meshes are loaded up and the two output shafts are locked together. The torque ratio (high-torque-wheel divided by low-torque-wheel) varies from max. 7:1 to 2.5:1, for the Torsen II style from 3:1 to 1.8:1 (depending on gear angles, gear surface treatment, type of bear
33、ing(plain, roller.)The Dana Trac-Loc limited-slip differential (see picture below) contains some preloaded (by Belleville springs) clutch plates, which provide a certain static breakout torque already at zero input torque. The spider gear and side gear mesh are designed in that way (with wedge-shape
34、d gear teeth), that increasing input torque will increase the load on the clutch plates, by this increasing the locking of the axle.Dana Trac-Loc limited-slip differentialThe viscous differential locks independent of of torques, but reacts to the speed differences between the output shafts. The cont
35、ained clutch plates have no mechanical contact, but very tight clearances, so that the viscous friction provides the torque transfer. Note that viscous differentials set in very smooth, and with a certain time delay, as the viscosity increases with the generated heat (means the special fluid is becoming thicker). This makes the handling easier for street use cars (while may be too slow for some racing applications).专心-专注-专业