《北京四中2014届中考数学专练总复习-实数-知识讲解(基础)(共8页).doc》由会员分享,可在线阅读,更多相关《北京四中2014届中考数学专练总复习-实数-知识讲解(基础)(共8页).doc(8页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精选优质文档-倾情为你奉上中考总复习:实数知识讲解 (基础)【考纲要求】1.了解有理数、无理数、实数的概念;借助数轴理解相反数、绝对值的概念及意义,会比较实数的大小;2.知道实数与数轴上的点一一对应,会用科学记数法表示有理数,会求近似数和有效数字;了解乘方与开方、平方根、算术平方根、立方根的概念,并理解这两种运算之间的关系,了解整数指数幂的意义和基本性质;3.掌握实数的运算法则,并能灵活运用. 【知识网络】【考点梳理】考点一、实数的分类1.按定义分类:2.按性质符号分类:有理数:整数和分数统称为有理数或者“形如(m,n是整数n0)”的数叫有理数无理数:无限不循环小数叫无理数实数:有理数和无理数
2、统称为实数要点诠释:常见的无理数有以下几种形式:(1)字母型:如是无理数,等都是无理数,而不是分数;(2)构造型:如2.000(每两个1之间依次多一个0)就是一个无限不循环的小数;(3)根式型:都是一些开方开不尽的数;(4)三角函数型:sin35、tan27、cos29等.考点二、实数的相关概念1.相反数(1)代数意义:只有符号不同的两个数,我们说其中一个是另一个的相反数0的相反数是0;(2)几何意义:在数轴上原点的两侧,与原点距离相等的两个点表示的两个数互为相反数;(3)互为相反数的两个数之和等于0.a、b互为相反数a+b=0.2.绝对值(1)代数意义:正数的绝对值是它本身;负数的绝对值是它
3、的相反数;0的绝对值是0可用式子表示为: (2)几何意义:一个数a的绝对值就是数轴上表示数a的点与原点的距离距离是一个非负数,所以绝对值的几何意义本身就揭示了绝对值的本质,即绝对值是一个非负数用式子表示:若a是实数,则|a|0要点诠释:若则则表示的几何意义就是在数轴上表示数a与数b的点之间的距离.3.倒数(1)实数的倒数是;0没有倒数;(2)乘积是1的两个数互为倒数a、b互为倒数.4.平方根(1)如果一个数的平方等于a,这个数就叫做a的平方根一个正数有两个平方根,它们互为相反数;0有一个平方根,它是0本身;负数没有平方根a(a0)的平方根记作(2)一个正数a的正的平方根,叫做a的算术平方根a(
4、a0)的算术平方根记作5.立方根如果x3=a,那么x叫做a的立方根一个正数有一个正的立方根;一个负数有一个负的立方根;0的立方根仍是0考点三、实数与数轴规定了原点、正方向和单位长度的直线叫做数轴,数轴的三要素缺一不可每一个实数都可以用数轴上的一个点来表示,反过来,数轴上的每一个点都表示一个实数要点诠释:(1)数轴的三要素:原点、正方向和单位长度.(2)实数和数轴上的点是一一对应的.考点四、实数大小的比较1.对于数轴上的任意两个点,靠右边的点所表示的数较大.2.正数都大于0,负数都小于0,正数大于一切负数;两个负数;绝对值大的反而小.3.对于实数a、b, 若a-b0ab;a-b=0a=b;a-b
5、0ab,bc,则ac.5.无理数的比较大小:利用平方转化为有理数:如果ab0, a2b2ab;或利用倒数转化:如比较与.要点诠释:实数大小的比较方法:(1)直接比较法:正数都大于0,负数都小于0,正数大于一切负数;两个负数,绝对值大的反而小.(2)数轴法:在数轴上,右边的数总比左边的数大.考点五、实数的运算1.加法同号两数相加,取相同的符号,并把绝对值相加;绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0;一个数同0相加,仍得这个数满足运算律:加法的交换律a+b=b+a,加法的结合律(a+b)+c=a+(b+c)2.减法减去一个
6、数等于加上这个数的相反数3.乘法两数相乘,同号得正,异号得负,并把绝对值相乘.几个非零实数相乘,积的符号由负因数的个数决定,当负因数有偶数个时,积为正;当负因数有奇数个时,积为负几个数相乘,有一个因数为0,积就为0乘法运算的运算律:(1)乘法交换律ab=ba;(2)乘法结合律(ab)c=a(bc);(3)乘法对加法的分配律a(b+c)=ab+ac4.除法(1)除以一个数,等于乘上这个数的倒数(2)两个数相除,同号得正,异号得负,并把绝对值相除0除以任何一个不等于0的数都得05.乘方与开方(1)求n个相同因数的积的运算叫做乘方,a所表示的意义是n个a相乘.正数的任何次幂是正数,负数的偶次幂是正数
7、,负数的奇次幂是负数(2)正数和0可以开平方,负数不能开平方;正数、负数和0都可以开立方(3)零指数与负指数 要点诠释:加和减是一级运算,乘和除是二级运算,乘方和开方是三级运算这三级运算的顺序是三、二、一如果有括号,先算括号内的;如果没有括号,同一级运算中要从左至右依次运算考点六、有效数字和科学记数法一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位一个近似数,从左边第一个不是0的数字起,到精确到的数位为止,所有的数字,都叫做这个近似数的有效数字精确度的形式有两种:(1)精确到哪一位;(2)保留几个有效数字.把一个数用a10(其中110,n为整数)的形式记数的方法叫科学记数法要点诠释:(
8、1)当要表示的数的绝对值大于1时,用科学记数法写成a10,其中110,n为正整数,其值等于原数中整数部分的数位减去1;(2)当要表示的数的绝对值小于1时,用科学记数法写成a10,其中110,n为负整数,其值等于原数中第一个非零数字前面所用零的个数的相反数(包括小数点前面的零).【典型例题】类型一、实数的有关概念1(1)a的相反数是,则a的倒数是_(2)实数a、b在数轴上对应点的位置如图所示: 则化简=_(3)(泉州市)去年泉州市林业用地面积约为亩,用科学记数法表示为约_【答案】(1)5 ; (2)-a-b; (3)1.02107亩.【解析】(1)注意相反数和倒数概念的区别,互为相反数的两个数只
9、有性质符号不同,互为倒数的两个数要改变分子分母的位置;或者利用互为相反数的两个数之和等于0,互为倒数的两个数乘积等于1来计算.(2)此题考查绝对值的几何意义,绝对值和二次根式的化简.注意要去掉绝对值符号,要判别绝对值内的数的性质符号.由图知:(3)考查科学记数法的概念.【点评】本大题旨在通过几个简单的填空,让学生加强对实数有关概念的理解举一反三:【变式】据市旅游局统计,今年“五一”小长假期间,我市旅游市场走势良好,假期旅游总收入达到8.55亿元,用科学记数法可以表示为( )A8.55106 B8.55107 C8.55108 D8.55109【答案】C.类型二、实数的分类与计算2下列实数、si
10、n60、3.14159、-、中无理数有( )个A1 B2 C3 D4【答案】C. 【解析】无理数有sin60、.【点评】对实数进行分类不能只看表面形式,应先化简,再根据结果去判断举一反三:【高清课程名称: 实数 高清ID号: 关联的位置名称(播放点名称):经典例题1】【变式】在中,哪些是有理数? 哪些是无理数?【答案】都是有理数;都是无理数.3计算:计算:【答案与解析】【点评】该题是实数的混合运算,包括绝对值,0指数幂、负整数指数幂,正整数指数幂只要准确把握各自的意义,就能正确的进行运算举一反三:【高清课程名称:实数 高清ID号:关联的位置名称(播放点名称):经典例题8-9】【变式1】计算:【
11、答案】;【变式2】计算:【答案】设n=2001,则原式=(把n2+3n看作一个整体)=n2+3n+1=n(n+3)+1=20012004+1=.类型三、实数大小的比较4比较下列每组数的大小:(1)与 (2)a与(a0)【答案与解析】(1),而与可以很容易进行比较得到:,所以;(2)当a-1或Oa1时,a;当-1a1时,a;当a=时,a=.【点评】(1)有时无理数比较大小,通过平方转化以后也无法进行比较,那么我们可以利用倒数关系比较; (2)这道题实际上是互为倒数的两个数之间的比较大小,我们可以利用数轴进行比较,我们知道,0没有倒数,1的倒数等于它本身,这样数轴就被这3个数分成了4部分,下面就可
12、以分类讨论每种情况.我们还可以利用函数图象来解决这个问题,把的值看成是关于a的反比例函数,把a的值看成是关于a的正比例函数,在坐标系中画出它们的图象,可以很直观的比较出它们的大小.举一反三:【变式】比较下列每组数的大小:(1)和 (2)和【答案】(1)将其通分,转化成同分母分数比较大小, , ,所以.(2)因为,所以.类型四、平方根的应用5已知:x ,y是实数,若axy-3x=y,则实数a的值是_.【答案】.【解析】,即两个非负数相加和为0,则这两个非负数必定同时为0,(y-3)2=0, x=, y=3又axy-3x=y, a=.【点评】此题考查的是非负数的性质.类型五、实数运算中的规律探索6
13、细心观察图形,认真分析各式,然后解答问题 (1)请用含有n(n是正整数)的等式表示上述变化规律;(2)推算出OA10的长;(3)求出S12+ S22+ S32+ S102的值.【答案与解析】(1)由题意可知,图形满足勾股定理,(2)因为OA1=,OA2=,OA3=,所以OA10=(3)S12+ S22+ S32+ S102=.【点评】近几年各地的中考题中越来越多的出现了一类探究问题规律的题目,这些问题素材的选择、文字的表述、题型的设计不仅考察了数学的基础知识,基本技能,更重点考察了创新意识和能力,还考察了认真观察、分析、归纳、由特殊到一般,由具体到抽象的能力.举一反三:【变式】图中是一幅“苹果图”,第一行有1个苹果,第二行有2个,第三行有4个,第四行有8个,你是否发现苹果的排列规律?猜猜看,第十行有_个苹果【答案】2(512).专心-专注-专业