机械手外文文献和文献翻译(共15页).doc

上传人:飞****2 文档编号:19331021 上传时间:2022-06-06 格式:DOC 页数:15 大小:104KB
返回 下载 相关 举报
机械手外文文献和文献翻译(共15页).doc_第1页
第1页 / 共15页
机械手外文文献和文献翻译(共15页).doc_第2页
第2页 / 共15页
点击查看更多>>
资源描述

《机械手外文文献和文献翻译(共15页).doc》由会员分享,可在线阅读,更多相关《机械手外文文献和文献翻译(共15页).doc(15页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、精选优质文档-倾情为你奉上This is a application of Application Ser. No. 10/799,595, filed on Mar. 15, 2004 now U.S. Pat. No. 7,081,700.FIELD OF THE INVENTIONThe present invention relates to a manipulator such as a minute component assembly apparatus which assembles a minute object such as a micromachine componen

2、t or unit by using a magnifying observation device such as an optical microscope, electron microscope, or scanning tunneling microscope, or a compact manipulator apparatus which performs diagnosis, medical treatment, research, biological production, or the like by physically manipulating, for exampl

3、e, minute tissues, cells, or genes of a living body and a minute object manipulating apparatus using the manipulator. BACKGROUND OF THE INVENTIONThere have been known a technique of controlling the posture of a manipulating member (end-effector) by rotating a general size arm using a general size be

4、aring and a technique of performing a necessary process on a minute work in a working device by rotating an arm or tool along an arcuated guide (see, for example, Japanese Patent Laid-Open No. 7-). In a conventional apparatus like those described above, if the distal end of an end-effector is not lo

5、cated on the rotation axis of a bearing or arcuated guide, the distal end of the end-effector moves out of the visual field or depth of focus of a microscope due to posture control operation. This makes it necessary to position the microscope and the distal end of the end-effector again. As describe

6、d above, in a manipulator which manipulates a minute object, when the posture of the end-effector at the distal end is controlled, the manipulation target object often moves out of the visual field of the microscope. In a conventional manipulator having three degrees of rotational freedom, in partic

7、ular, since the rotation axes corresponding to the respective degrees of freedom do not coincide with each other and do not cross at one point, the distal end of the end-effector tends to move out of the visual field or depth of focus of the microscope due to posture control operation. In such a cas

8、e, the microscope and the distal end of the end-effector must be positioned again. This operation requires a long period of time. SUMMARY OF THE INVENTIONIt is an object of the present invention to provide a manipulator such as a compact manipulator apparatus which solves the above problems and mani

9、pulates a minute target object, and a minute object manipulating apparatus or the like using the manipulator. In order to achieve the above object, according to the present invention, there is provided a manipulator comprising: a manipulation target object manipulating member being driven and contro

10、lled by a plurality of free rotation axes; all the plurality of free rotation axes crossing at one point; and, a manipulation distal end portion of the manipulating member being placed near the intersection.According to this arrangement, the manipulator has a mechanism in which a plurality of (typic

11、ally three) free rotation axes cross at one point, and the distal end portion of a manipulating member (end-effector) which manipulates a manipulation target object is placed near the intersection. With this structure, even if, for example, the posture of the end-effector is changed, its distal end

12、portion can be made to remain within the visual field of a microscope.The following embodiment can be provided on the basis of the above basic arrangement.According to an embodiment of the present invention, the manipulating member is integrally mounted on a spherical shell movable member, the manip

13、ulation distal end portion of the manipulating member is placed near the center of the spherical shell movable member, the spherical shell movable member is in contact with a vibration member which can vibrate, and rotation of the spherical shell movable member around the center thereof is controlle

14、d by controlling vibration of the vibration member, thereby controlling a posture of the manipulating member. When the rotation of the movable member in the form of a spherical shell is controlled by controlling the vibration of the vibration member, the distal end portion of the end-effector is mad

15、e to remain within the visual field of the microscope even if the posture of the end-effector is changed. According to another embodiment of the present invention, the manipulator further comprises: first rotating means for rotating a first rotating shaft on which a first arm is mounted; second rota

16、ting means for rotating a second rotating shaft which is mounted on the first arm and on which a second arm is mounted; and third rotating means for rotating a third rotating shaft which is mounted on the second arm and on which a third arm is mounted, wherein the manipulating member is mounted on t

17、he third rotating shaft, and the first, second, and third rotating shafts pass through a manipulation distal end portion of the manipulating member. In addition, in order to achieve the above object, according to the present invention, there is provided a minute object manipulating apparatus compris

18、ing: a manipulator comprising a manipulation target object manipulating member being driven and controlled by a plurality of free rotation axes, all the plurality of free rotation axes crossing at one point, and a manipulation distal end portion of the manipulating member being placed near the inter

19、section; a magnifying observation device for magnifying observation of the manipulation target object and the manipulation distal end portion of the manipulating member; and a remote controller for remotely controlling the manipulator. This apparatus also makes the most of the advantages of the abov

20、e manipulator. In addition, for example, the manipulator can be placed on the upper side of a manipulation target object, and the magnifying observation device can be placed on the lower side of the manipulation target object.Other features and advantages of the present invention will be apparent fr

21、om the following description taken in conjunction with the accompanying drawings, in which like reference characters designate the same or similar parts throughout the figures thereof. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTSPreferred embodiments of the present invention will now be describ

22、ed in detail in accordance with the accompanying drawings. First EmbodimentThe first embodiment of the present invention will be described first with reference to FIGS. 1 and 2A to 2D. This embodiment uses a mechanism in which all the axes corresponding to three degrees of rotational freedom cross a

23、t one point. In this system, the center of the distal end manipulating portion of an end-effector is placed near the center of the spherical rotating member of a vibration actuator having three degrees of freedom like the one disclosed in Japanese Patent Laid-Open No. 11-. In such a vibration actuat

24、or, rotation axes can be arbitrarily set. Since all the rotation axes pass through the center of a spherical rotating member, a simple system with high rigidity can be formed by using this actuator. As a sensor for feeding back the position and velocity of the spherical rotating member, a two-dimens

25、ional position sensor using a detection principle like that disclosed in Japanese Patent Laid-Open No. 10-65882 is suitably used. This sensor irradiates a spherical surface with light emitted from an irradiation source based on the optical mouse system or the like to form an irradiation pattern cons

26、tituted by a high-luminance region and a relatively low-luminance region corresponding to the minute shape of the spherical surface. Movement information is then obtained by using the movement of the irradiation pattern based on the relative movement between the spherical surface and the sensor. FIG

27、. 1 is a view which is most indicative of the main part of this embodiment. Reference numerals 20-1, 20-2, and 20-3 denote the first, second, and third elastic member vibration elements of a multiple degree-of-freedom vibration actuator, respectively; and 1-1 and 1-2, piezoelectric ceramics which ge

28、nerate bending vibrations and longitudinal vibrations, respectively. Each vibration element 20 is fixed/supported on a frame (not shown) with an arm portion (see 1#x2013;2#x2032; in FIG. 6) extending from an electrode plate portion for a piezoelectric ceramic in the radial direction. The driving pri

29、nciple and arrangement of the multiple degree-of-freedom vibration actuator will be described in detail later. Reference numeral 2 denotes a movable member in the form of a spherical shell whose spherical surface comes into contact with the vibration element 20-1. In this embodiment, only a portion

30、of the movable member 2 is a spherical surface, which comes into contact with the vibration element 20-1. The mechanism of driving control will be described later. Reference numeral 3 denotes a micro-hand which is integrally mounted on the mount portion of the lower portion of the movable member 2 i

31、n the form of a spherical shell. The micro-hand 3 has manipulation functions such as a function of grasping or releasing a minute object such as a cell and a function of performing a process such as forming a hole in a minute object or cutting it. The micro-hand 3 is placed near the center of the sp

32、herical surface of the movable member 2. Reference numeral 4 denotes a vessel in which a minute object such as a cell is stored. The vessel 4 is made of a transparent material such as glass. A liquid such as physiological saline solution is often contained in the vessel 4. Reference numeral 5 denote

33、s an X-Y or X-Y-Z stage which can adjust the relative position between the micro-hand 3 and a minute object as a manipulation target object by adjusting the position of the vessel 4 on the stage; and 6, a magnifying observation device such as a microscope, which magnifies images of the manipulation

34、target object and micro-hand 3 to allow observation of them. Referring to FIG. 1, the magnifying observation device 6 allows observation from below the transparent vessel 4 through the hole in the center of the X-Y-Z stage 5. Reference numeral 7 denotes a magnet which attracts and holds the movable

35、member 2 made of iron, and also has a function of bringing the spherical surface of the movable member 2 into contact with the vibration element 20-1 with a constant pressure. The details of the multiple degree-of-freedom vibration actuator will be described. FIGS. 2A to 2D show the driving principl

36、e of this vibration actuator. A piezoelectric element 33 serving as an electro-mechanical energy converting element which provides the displacements shown in FIGS. 2B to 2D is clamped/fixed between cylindrical elastic members 31 each serving as a single vibration member. The piezoelectric element is

37、 formed by stacking a plurality of single piezoelectric element plates with electrode plates being inserted between the piezoelectric element plates as needed. This allows an alternating signal for driving to be applied to each necessary piezoelectric element plate. In this case, the piezoelectric e

38、lement 33 repeats expansion and contraction displacements in the axial direction upon application of alternating signals, and includes the first piezoelectric element which excites longitudinal vibration as a displacement in the direction of the z-axis of the three axes, i.e., the x-axis, y-axis, an

39、d z-axis, as shown in FIG. 2B, the second piezoelectric element which excites transverse (bending) vibration within the z-x plane as shown in FIG. 2C, and the third piezoelectric element which excites transverse (bending) vibration within the z-y plane as shown in FIG. 2D. The above first piezoelect

40、ric element is uniformly polarized in the thickness direction. Each of the second and third piezoelectric elements is polarized such that the portions on both sides of the diameter have opposite polarities in the thickness direction. When, for example, alternating signals having a phase difference o

41、f 90#xb0; are applied to the second and third piezoelectric elements, two bending vibrations in the vibration member combine to form an elliptic motion around the z-axis (within the x-y plane) on the surface of the vibration member. In this case, since the natural frequency of the vibration member w

42、ith respect to the x-axis is almost equal to that with respect to the y-axis, the above elliptic vibration can be generated by applying alternating signals having this natural frequency as a driving frequency to the second and third piezoelectric elements. When an alternating signal having a frequen

43、cy almost equal to the natural frequency in the z-axis direction of the vibration member is applied to the first piezoelectric element, the vibration member repeats longitudinal vibration of the primary mode at a predetermined period. In this case, when an alternating signal is applied to the second

44、 piezoelectric element to excite vibration of one period matching (almost matching) with one period of longitudinal vibration in the vibration member, an elliptic motion is produced within the x-z plane at a point on the surface of the vibration member, thereby obtaining a driving force in the x-axi

45、s direction (around the y-axis). In this case, since the natural frequency of the vibration member in the z-axis direction differs from the natural frequency of the primary mode of bending vibration in the x-z plane, the second piezoelectric element is driven in the secondary mode of the natural fre

46、quency of bending vibration in the x-axis direction, thereby matching the period of longitudinal vibration with the period of bending vibration, as shown in FIG. 2C. Likewise, when an alternating signal is applied to the third piezoelectric element to excite vibration of one period matching (almost

47、matching) with one period of longitudinal vibration in the vibration member, an elliptic motion is produced within the y-z plane at a point on the surface of the vibration member, thereby obtaining a driving force in the y-axis direction (around the x-axis). In this case, since the natural frequency

48、 of the vibration member in the z-axis direction differs from the natural frequency of bending vibration within the y-z plane, the third piezoelectric element is driven in the secondary mode of the natural frequency of bending vibration in the y-axis direction, thereby matching the period of longitu

49、dinal vibration with the period of bending vibration, as shown in FIG. 2D. That is, when an alternating signal having a frequency similar to the natural frequency of a vibration member 1, e.g., an AC voltage, is applied to the first, second, and third piezoelectric elements, longitudinal vibration or transverse (bending) vibration having a natural frequency is excited in the vibration member as shown in FIGS. 2B to 2D. When an alternating signal is selectively applied to two of the first, second, and third pi

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁