2021-2022年收藏的精品资料计量经济学评论.doc

上传人:知****量 文档编号:19284614 上传时间:2022-06-05 格式:DOC 页数:21 大小:148KB
返回 下载 相关 举报
2021-2022年收藏的精品资料计量经济学评论.doc_第1页
第1页 / 共21页
2021-2022年收藏的精品资料计量经济学评论.doc_第2页
第2页 / 共21页
点击查看更多>>
资源描述

《2021-2022年收藏的精品资料计量经济学评论.doc》由会员分享,可在线阅读,更多相关《2021-2022年收藏的精品资料计量经济学评论.doc(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、数学与经济学经典教材推荐和学习心得 作者:都是骗银地发布时间:2007-11-25 16:27:27来源:点击数:774 前言 不少同学好像一直为数学的事情困扰,坦白说,我也是。有些人来问我该看什么教材?怎么学?什么顺序?虽然不厌其烦的谈过许多次,但一直提不起兴趣就这个内容写东西。原因很多,一来因为其实行内用哪些书一般大家都知道,二来其实根本不存在什么学习方法,看能看懂的,反复练习,看不懂的定理和证明就先多抄几遍,往往抄最多三遍就了解的差不多了。窍门就一个使劲下功夫,抱着一劳永逸的态度使劲读两年,数学的困扰肯定会离你远去。 最近几天没什么事,FTP建起来了,又多了一种交流手段,很开心。躺在床上

2、发呆的时候觉得还是写个东西出来吧,毕竟自己也走了不少弯路,看了一些后来觉得不值得看的书。所以写点东西出来供大家参考可能是有益的。再者因为花坛这两天太萧条了,认真写个原创贴可能会吸引一些人气。最后也希望学过这些书的同学多来交流一下心得,很多地方我自己也不是很明白。 (一)、本文思路:就像我在另一篇文章学习经济学五年有感一无是处中谈到的,学东西要从简单的学起,“复杂的事情简单作,简单的事情反复作”。本文推荐书的顺序是先从简单的直观开始,然后到抽象的分析,然后再回到直观。 (二)、推荐书目的标准: 1、可得性:所有的书都是可得的,不可得说什么也没用。来源主要是我们得两个图书馆(主要是总院馆),已经出

3、的影印版,以及九章书店可以买到的书。如果哪些书上面几个地方也没有的话,可以找我借去复印。 2、全部为英文。中文的数学书我不是很了解,不敢乱说。 3、全部是基础类的书:就是数学分析,实分析,概率,统计,线性代数,还有动态经济方法。更“专业”的书这里也许会涉及,但不会多提。比如Kenneth Judd ; Burmeister & Dobell ;Halbert White 等等类似的书这里不会多谈。 4、一个特定题目的主要书目不会超过两本,太多了就滥了,看也看不完。当然可能顺手会多举几本书作参考。饶是如此,看完这些书也得一两年,学到什么程度就看个人努力了。每天花个4、5个小时大概是要的。 教材的

4、作用很大,尤其在研究生前两年打基础的阶段,值得下功夫。 前言的最后一句是废话:多作练习;别跳过证明直接用结论,否则恐怕看多少次也解决不了数学的“困扰”。 PS: 1、九章书店地址在海淀图书城(那个楼叫什么来着,就是靠着麦当劳那边), 网上可以查书: 2、总院图书馆数目检索系统 http:/219.141.236.146/ecolas-c/intro.php 一、谈谈数理经济学教材 写数理经济学教材的人不容易,篇幅有限的情况下既要照顾数学又要照顾经济学,很多时候顾此失彼,呵呵。我后来很少看类似的书,经济学看三高的教材,数学知识看数学书,分工明确。学经济学的学生肯定经典的三高教材都有,所以再买数理

5、经济学教材的话将会有大量的内容重复,而且其中的数学内容往往又不够深入完整,这是缺点。 然而,数理经济学的书在开始的时候还是要看的,一来回顾已经知道的数学知识,把它们和现在学的经济学结合起来;二来学数学见效比较慢,往往跟不上第一学期三高的教学要求,所以需要弄点“速成”秘笈,数理经济学书可以满足这个要求(准确的说,只能满足高微的要求)。 如果要往书架上添两本教材的话,我个人推荐 Eugene Silberberg 等人的 (第三版)以及 Angel de la Fuente , 两本书都是上海财大出的。前者的影印和中文都有,后者的原版总院馆有。 前者的中文前言和目录大家可以看一下 后者的数学比较抽

6、象,前半部分(前六七章)基本是简单的数学分析和实分析杂交品种,基本看不到经济学,Berkeley在讲这本书的时候前面还加入了一些简单的测度论内容。研一花了将近一个月抄了一遍前六章,作了所有习题,发现没什么意思,不如直接看数学书。推荐的原因有三:一来因为这本书很流行,网上围绕它展开的课程讲义和相关材料不少;二来因为其中的抽象数学内容属于“精选”,可以当作“速成”参考;三是该书的后半部分讲的是动态经济学的内容,有很多宏观经济学的例子,而第一本书中没有这些。 下面简单谈谈其他几本常见的类似的书,蒋中一的基本方法属于床头读物,厚厚的一本,写得不错,就是罗嗦,大部分内容是很多人已经知道的,复习一下罢了。

7、估计看书快的一周就看完了,慢的话两周也可以读完。图书馆有英文版。 高山晟那本经济学中的分析方法倒是不错,但我一直没搞明白这本书的目标读者是谁?或者换句话说,我不明白他在写出了Mathematical Economics(1985年第二版,不清楚继续更新了没有)之后,为什么又搞了这本书出来?前者在绝大部分地方不过是后者的缩写,书中随处可见“请参考takayama 1985”字样。这本书初学者肯定看着不舒服,太简捷了,而且内容不少。如果想买人大那版中文的话,实在不如到总院借来后者的英文原版复印一下。 其实实在想“速成”以跟上微观的进度的话,最快可能是去读Jehle & Reny (Second E

8、dition)那一百多页纸的数学附录,是高微教材里附录写得最好的一本(准确的说,最“人性化”的, 呵呵, Varian 太爱惜笔墨, MWG“过分”严格,Kreps有特点,花了寥寥数页搞定了constrained optimization, 平地里蹦出一章动态规划来,嘿嘿)。 如果你实在想急于“搞定”凹性和优化知识的话,Dixit的optimization in economic theory写得不错,薄薄的小册子,一周内肯定读完,经济含义丰富,内容简单明了。本书研院图书馆有两本。如果再想系统化的严格一下,Madden Concavity and Optimization in Microec

9、onomics是个理想选择,从最简单的一元函数、凹性、无限制优化讲起,然后加入一个约束,两个约束,多个约束,严格凹性,拟凹登场,直到解得存在性,可微性,唯一性。一本书完了,直观感觉,数学严格性和经济含义兼备。当年我比较笨,数学基础差,这本书完完整整抄了一遍,后来讲微观习题课很多内容要感谢这本书。总院馆有。 罗嗦了一堆,不说了。 二、说说数学分析和实变函数(不敢叫实分析,呵呵) 进入这个题目我有点胆战心惊,估计能做到野人献曝就不错了,写出来的全是垃圾也是很可能的,呵呵。原因有二:一是这方面内容自己虽然下过很大功夫,但总觉得不是那么得心应手,总觉得隔着点儿什么,还是功夫不够。二是自己曾花了很长时间

10、犹豫要不要下很大很大功夫学这些东西,因为初学好像和经济学不靠边儿,不过终于还是下功夫了,确实感觉必不可少,另外确实很有趣。 古龙萧十一郎里有个人叫杨开泰,我印象很深,倒不是因为他对风十四娘一往情深,而是因为他的武功。源于两个情节,一个是他的一句话,大意是几十年来,少林功夫的早课晚课从不耽误;其二是他和萧十一郎的交手,萧很惊讶从前小看了这个人,因为“他从未见过这么扎实的武功”,虽然他心中有愧,没有就杨出第十七招时露出的三个破绽出手,但两百招以后杨的功夫完全展露出来了,已经打出了完美的境界。学分析类课程的感觉就和这段武功描写大概差不多。只要学扎实了,后来学经济学确实得心应手,可以“一次性”解决“不

11、会证明”的问题(当然好处远不止与此)。 在看高微作业的时候,有些同学在抽象的证明题后面留了大片空白,有些证的不知所谓,可能就是因为抽象的数学训练不够;也有不少证明的很漂亮,我一年级的时候肯定没这水平,呵呵。 学分析的好处很多文章谈的很多了,还是那句话,5遍不算多,十遍也值得(“实变实变,不学十遍哪行?”嘿嘿),会大幅加快后面学习的进度,比如学概率论或者动态规划的时候,很多内容可以跳过去。 进入教材之前,还要遵守一下前言的思路,说说微积分的直观感觉。数学系的同学虽然直接上的数学分析,但一般数学系都会给本科生开大学物理,所以他们对微积分的直观感觉应该是不差的。普通学经济的同学我就不敢说了,反正我自

12、己没感觉。后来补直觉的时候用的是Stewart (第五版),一千多页,在加两张光盘,跳过所有的练习不看,只看直观解释部分,然后对照光盘图文动画并茂,费了一阵功夫,总算知道了微积分那些概念能干嘛了,呵呵。 进入教材吧。 如果这两门课我选两本教材的话,我会选Apostol (第二版)和 Aliprantis & Burkinshaw . 如果每门课两本的话,数学分析我会添上 Rudin , 实分析的话,添Royden (第三版) 或者Rudin , 后者拿不准。因为如果我说靠自学就把这两本书的内容啃完了的话,那我是在YY,但是Aliprantis & Burkinshaw 那个可以搞的差不多,配套

13、的习题集和答案帮了不少忙。以前我以为是自己笨,但是浏览了一下Amazon对Royden那本书的评价,总算喘了口气,嘿嘿。 Apostol的书写得太漂亮了,直观,严格,证明漂亮,阅读时有一种快感难以言表,而且还有很多习题我居然也是可以自己做的不错滴,最后这条很让我兴奋。(我们的FTP上有前九章所有的习题答案)当然,我也时不时摘几道吉米托维奇做做,而且经常会陷入幻想,自己有一天很牛叉的做完了所有的吉米,唉,估计也只能是幻想了。 Rudin的书个人特点显明,翻开书一看,就看见一个个黑体字Theorem, Corollary, Proof没有废话,怪不得机械工业出版社的影印版封底有这样一句话“与其说这

14、是一部教科书,不如说这是一部字典。” 饶是如此,该书还是不可或缺,证明简单,漂亮,有力量!此公写得三本分析皆为经典,上面提到了两本,还有一本,这个偶就彻底看不懂咧。 实变函数可说的话不多,前面推荐的书都以自学为目的,实变如果也要自学的话,我觉得不太靠谱,推荐这本书是因为我学过一些实变,然后还学过一些简单的测度论,所以才堪堪把Aliprantis & Burkinshaw 搞的差不多。所以这部分内容还是推荐大家去听课吧。 PS:据说博弈论老牛Binmore 写过一本Mathematical Analysis: A Straightforward Approach很是精彩,可惜无缘拜读啊。此公在另

15、外一本的前言中有一段话着实精彩,文采太好,不会翻译,所以直录如下作为本节结尾: Much of what passes for an undergraduate education, both in the United States and in Europe, seems to me little more than an unwitting conspiracy between the teacher and the student to defraud whoever is paying fees. The teacher pretends to teach, and the stud

16、ent pretends to learn, material that both know in their hearts is so emasculated that it cannot be properly understood in the form in which it is presented. Even the weaker students grow tired of such a diet of predigested pap. They understand perfectly well that “appreciating the concepts” is getti

17、ng them nowhere except nearer to a piece of paper that entitles them to write letters after their names. But most students want more than this. They want to learn things properly so that they are in a position to feel that they can defend what they have been taught without having to resort to the au

18、thority of their teachers or the textbooks. Of course, learning things properly can be hard work. But my experience is that students seldom protest at being worked hard provided that their program of study is organized so that they quickly see that their efforts are producing tangible dividends. 哈哈,

19、learning things properly and making sense. 三、线性代数 很长时间以来,线性代数的重要性被我忽略了,还沾沾自喜的认为自己学得不错。大学时候好像这门课最好学,考研时它也比微积分和概率简单,不就整整逆矩阵求求特征值么,好说好说。发现自己错的离谱是后来的事了。 也许线性代数的那些基本运算并不难,但其中蕴含的数学含义丰富,尤其是学到向量空间和线性变换之后,对理解很多经济学内容大有帮助,比如计量经济学的很多概念。我在数理经济学那部分中推荐Angel de la Fuente这本书的一个原因是这本书第三章整章都在讲些抽象概念,我从中学到了不少东西。 还是从直观开始

20、吧,当初学完线代之后,我基本完全不知道这东西是干嘛用的。于是像补微积分的直观一样,去补习线代的直观含义和现实应用,看了一本Jain & Gunawardena 的 , 顾名思义,又是光盘和书的结合,动画应用图形一顿轰炸,明白了那些数学概念在现实中是怎么用的。这本书超简单,数学内容估计一两天就看完了,主要是看看以前不熟悉的各种矩阵分解,简单的谱,以及特征值问题中类似Cayley-Hamilton定理等。本书不涉及二次型和矩阵求导等一年级高级经济学课程急需用到的内容,所以只能用于回顾直觉,呵呵。 正式的教材推荐两本,简单全面且和经济学联系紧密的。Hadley 和 Dhrymes 。 Hadley的

21、书非常经典,几何的直观讲的很好,内容比较全,值得系统的回顾一下。 Dhrymes的书大概100多页,全部由定理和证明堆成。作为前本书补充的内容大概有30多页吧,集中在各种伪逆矩阵,矩阵分解,矩阵向量化和求导。不过有个问题我一直不明白,本书讲了很多伪逆矩阵(广义逆矩阵),但之后我学了一年的高级计量,好像用到的地方少的可怜又可怜,不解。不过很有意思。 这两本书研院图书馆都有。 好像这些内容暂时就够用了,至于更抽象的诸如线性变换,同构(isomorphism),线性同胚(linear homeomorphism)等,简单的可以参考一下Angel de la Fuente的第三章,后来用到再仔细查(事

22、实上我好像也没后来回来过,呵呵)。 再次强调一下线性代数的几何含义,学习计量经济学时候那些诸如投影矩阵的东东,都和这部分内容有关,懂了几何含义学起来会容易一些。 四、概率 (一气码了6000字眼都花了,鼓起余勇再码一节) 概率和统计的重要性不用强调,不好好学压根就学不了经济学。 概率教材多如牛毛,有得偏统计(实际上每本统计都会先讲概率),有得偏随机过程(比如Grimmett & Stirzaker那著名的Probability and Random Process),所以还得分开谈。 先谈“纯概率论”,概率论的重要性不是会弄几个分布就搞得定的,顶顶重要的是对基本概念从直观到抽象的把握。(说这话

23、有点底气不足,概率论那种随机的概念好像从来就没直观过,实际上往往和直观相悖,这点一会儿再谈) 这里的两本书出自同一人之手,那就是俺无比崇敬滴牛人钟开来(Kailai Chung)老师(此公彪悍的事迹一直是K斑竹最爱的话题之一,呵呵。哪天要求他就此开个转贴讨论一下); Elementary Probability Theory with Stochastic Process和A Course in Probability Theory第二版,前一本书研究生院馆中英文都有,中文翻译的相当不错。后一本好像没有。 两本书都注重概率论的基本概念,前一本是初级读物,但是想读好了也不容易,原因不是数学的,那

24、些数学大学学过了,可能原因还在于概率论的基本概念往往不那么直观,虽然这本书举了大量例子来讨论直观感觉。但是写得真好啊,真好啊,真好啊。好像读了不止一遍才舍得还回去,唉,好得我忍不住叹息一声。实在建议所有没读过的人读一遍。 这里插一句,图书馆还有本中文小册子叫随机性,属于科普读物一级,妙趣横生。里面有N多例子说明概率的推理和直观感觉不符,随机性真是神秘的东东啊。 第二本是“高等概率论”范围的“初级”读物,要求先修过一些实分析,要不没法看。一反第一本书里淳淳善导之文风,比古龙还简略,共九章,从测度论开始,花了一学期在一位牛人老师清晰无比的讲解下堪堪学完六章(没学567章),饶是如此还是云里雾里,做

25、习题做的痛不欲生,唉。不过总算挺过来了,对进一步学习高等计量和数理统计帮助大的很。再多一句嘴,学测度论里“单调类定理”的证明时我有一种老俞看到维加斯“快速离婚通道”的感觉留着口水惊叹:“太TM精妙了!”,唉,回忆起来都忍不住又叹一口气。 难道就没有“简单”的讲这些深奥概念的书?有,不过我觉得更难读,嘿嘿。总院馆有一本两个英国人写的书,忘了书名也懒得查,雄心勃勃想直观的尽量用文字讲解类似概率空间这种概念,淅沥哗啦花了将近三章密密麻麻文字的篇幅告诉你什么“可测”啊“不可测啊”,“幂集”啊,希格马代数是什么东东啊。当初一看之下如获至宝,以为我这笨人有救了,结果差点读死我,罗嗦无穷多次还是不明白,抽象

26、就是抽象,还是学数学语言和证明懂得快。 当然有些书在这方面做的还不错,后面讲数理统计时会提到一本。 五、数理统计 (码字都码饿了,吃点东西接着来) 数理统计是什么东东?申请的时候老美一些网页上的解释让我恍然大悟,解释就是在“数理统计”后加个小括号,里面注明使用微积分的统计学才是serious的,哈哈。 社会科学的统计学毕竟不同于基于自然科学ceteris paribus传统的数理统计学,所以学数理统计之前了解一些统计学的基本概念十分必要,我个人一直对经济学很好的梳理数据工作十分赞赏,描述统计绝对是大学问!(有很多这种书,类似统计学的世界啊等等的,以前对统计学不了解的XDJM这些“粗浅”的东西一

27、定要看的)。总院馆有本书,Aris Spanos , 厚厚的一大本,从头到尾都在强调由于社会科学数据特殊性质而造成的分析方法差别,读下来获益匪浅。而且这本书在讲解类似“概率空间”这种抽象概念时做的很好,应该说非常好,当初没学老钟书之前我已经对这个概念的把握已经及格了,就是由于这本书。 扯远了,回来谈数理统计。 两本书,一本简单一本难一些。Hogg & Craig 第五版; Casella & Berger 第二版. 前者是我本文里所有提到的书里唯一没学过的一本,因为当初看到它的时候我这部分内容已经读别的书学完了,推荐它是因为它风行世界,九章卖的影印本还很便宜,内容全面。 统计学的直观无比重要,

28、什么随机抽样啊,大数定律和中心极限定理啊,各种检验怎么来的啊,自由度干嘛使的啊,各种分布的图形啊,甚至矩母函数能起什么作用啊等等,这些在第一本书里都有解答。此外,真正想直观把握的话必须亲自动手做一下看看效果,所以我强烈推荐FTP里那个“统计学基本概念教学互动软件”,能看到很多动画效果,绝对过目难忘! 第二本书是真正非常serious的数理统计学教材,有了第一本中的知识做基础的话,读来会快一些,但也需要花很多很多时间去做推导。以前我的那篇学习计量经济学:教材,手册,软件,数据里反复强调了学习计量必须学会推导,如果这里你认真推了的话,计量会省下不少时间。本书还有一个特点就是“现代”,什么Boots

29、trap啊,MONTE CARLO啊,Robust回归啊等等统统登场,这些东西对于学习计量绝对少不了。学习本书时,如果你恰好还学过了老钟的那本高等概率的话,理解起大样本理论时会轻松很多。(突然想起了“淡收敛”这个概念,为啥没有“咸收敛”呢,hiahiahia) 出于个人偏好,最后再添一句关于Halbert White ,如果学Wooldridge 的话,这本书是最好的预备读物,用到的推导思路乃至符号完全一致,不奇怪,Wooldrige是White的学生(White 是 Hausman的学生,坊间疯传著名的Hausman检验实际思路是White上研究生课时提出来的,不过当时white道行浅,有了

30、思路不会证明,最后老Hausman回家就偷偷把它做出来了,哈哈),两本书的前言里都互相提到了对方,嘿嘿。 好像就剩动态经济学了,哎呀,离完工不远了。 六、动态经济方法 (最后一节咧,熬一下收工睡觉) 这部分内容很熟悉,按理说不难写,偏偏不知道从哪开始,想来想去决定先批两句蒋中一那本动态最优化基础,嘿嘿。说“批”也谈不上,书写得还是不错,不过没什么用处,看完了别说肯定不会用动态规划这一最重要的方法(因为压根书里就没说),连变分法能不能用我也抱疑问,而且书中用到的符号好像很奇怪,我比较傻,学过一种方法后如果将来遇见同样的问题但符号不一样的时候,往往就会产生没学过的错觉,搞得自己很沮丧,所以十分痛恨

31、那些使用“奇怪”符号的作者,嘿嘿。 好像从学理上讲,要先说说微分方程和差分方程才能进入本节主题,学过前者,后者懂点皮毛,所以还是算了,前面露怯已经够多了。 两本书,一本简单一本难,内容也完全不同,前者是可微的动态优化方法,Kamien & Schwartz (应该是第二版了吧),后者是离散情况下的动态规划方法,Stockey & LUCAS & Prescott 。(突然想起了邹至庄教授的那次讲座上我和他的交流,显然他的Lagrange方法也应该有一席之地的,可惜我没学过,嘿嘿)。龚六堂老师那本动态经济学方法就是这两本书的完美“嫁接”版,哈哈。 第一本很好看,用不了多久自学也能看完,章节分得很

32、多,经济学例子也不少(其实也不多,就是RAMSEY模型来回变)。但拿到模型会不会求解就不一定了,学动态经济学绝对是锻炼计算能力的极佳机会,知道基本方法用不了两小时,但用这方法求解模型就会往死里算了,唉,体力活,不好整。 另一本就不好看了,不过有基本的实分析知识和老钟那本高等概率做基础,数学部分学得很快(这本书绝大部分内容是数学,经济学例子也很多,但很短,大都当习题使唤了)。最后证明解存在性时使用的“压缩映射的不动点定理”实际十分简单(虽然预备知识学了半学期),在我看来证明微分方程解存在的那个毕卡定理的构造还要更精妙一些,嘿嘿。一样的道理,学会定理容易,不好算啊不好算。 至于随机动态部分就不是我

33、能懂的了,ITO公式倒是会用,啥意思一点感觉没有,嘿嘿。 好像还缺点什么?对了,MATLAB,使用方法就是上网下载程序然后粘到程序窗口就OVER了,还是这个好学,哈。 结语 作为平生写得最长的帖子而且是一口气完成,很有必要弄个结束语。本来想把自己的数学藏书都贴出来供院里的各位XDJM借阅滴,但想想那个太费时间,还是改天换个新贴再来吧。 怎么结尾呢?恩,想到了。 “好好学习,天天向上”,哈哈。关于计量经济学的学习经验 作者:旺财 Glaeser发布时间:2007-11-25 16:24:03来源:点击数:133 首先声明我的观点,计量是工具也是理论,它不是普通计算机软件,不懂背后的道理也可以用,

34、我个人强烈反对不掌握扎实的理论就去“应用”计量经济学,那绝对是强奸数据。 本人学习经历:读过大多数国际流行的各种“级别”的计量教科书(除了HAYASHI那本,没借到),熟悉SAS,做过大量计算机练习,“蹂躏”过不少中国的数据,现在读paper,参考手册。 开始篇(不是入门,那是很往后的事情了) 个人认为只有wooldridge那本书是值得反复读的(是那个初级本,国内译本也很好),古扎拉弟就算了,很多理论上的原因大家学到后来就明白了。古的书我读了两遍,现在早就扔了。但现在依然常常翻阅WOO.对于开始的人,woo书上的海量例子太宝贵了,而且绝大多数取材于著名论文,值得仔细品味。 学习方法:用随便那

35、个软件(我用SAS)把书中的例子几乎全部做一遍,知道你用的软件所报告的结果中那些重要的东西是怎么来的(不用知道的太精确),该怎么解释。书上后来那几章不懂也没关系。 数学要求:基础数理统计学(就是一般初级书上附录那些内容),不用懂大样本理论,知道有一致性这个概念就行了,并且记住它是计量经济学中几乎唯一重要的评价统计量的标准。什么无偏啊有效啊都几乎是空中楼阁,达不到的标准。 忠告:1、别管 R square,几乎不用管多重共线性,知道异方差和自相关的概念就行了,知道大概怎么诊断,至于纠正嘛,不用太在意。不过对于GLS还是要有个认识。 2、对于简单二元模型中OLS相关的重要推导全部背下来,不多,但很

36、重要。 3、这个阶段不要陷入公式推导。 4、如果你是初学者,不要指望把woo的书处处看懂,差不多就行了。 5、可以拿中国的数据“蹂躏”一下。 入门篇 数学要求:矩阵,大样本理论 稍微再难一点的统计学 矩阵书很多,GREEN附录也可以(推荐Dhrymes -mathematics for econometrics,这本书对大多数人来说需要看的也就大概三四十页吧)。大样本理论有难度,需要做比较严肃的准备,有比较好的概率背景的同学大概也需要时间来适应其中繁琐的推导,white-asympotic theory for econometricians前三四章是值得花时间的。数理统计学教材多如牛毛,不说

37、了,大致GREEN附录的那些内容是要了解的(尤其MLE)。 教材:买一本GREEN的书放着,看完附录就算了,可以以后时不时的查阅其中其他内容。读过这本书的同学我相信会有很多人认为它是不值得通读的,没有重点,全面铺开,很恶心的做法。而且这本书例子不多,实际上我认为思想也很肤浅,没有着重捕捉回归的思想,计量模型中的因果含义等等。 建议:读Golderberg(怀疑又拼错了)吧,个人认为和GREEN功力的差距是本质的,又短又好的一本书,某些地方值得反复读啊读。起码他会真正告诉你OLS假设的含义,呵呵。 基本读完这本书之后,对计量差不多就有个认识了,可以真正开始深入学习了,wooldridge(200

38、1)和hamilton的很多章节是必读的。学到这个阶段的朋友就不需要我多罗嗦了。估计手册和必读的精彩论文都已经有所认识了。 忠告:1、要时不时的作个图看看,不看图(尤其是时间序列)是疯子的做法。ARMA模型要玩熟,要不然总有一天你得回来重新再学,嘿嘿。 2、学好OLS的相关内容实在是太重要了,不要见了更高深的方法就以为OLS没用了,多学几遍OLS吧。基本的矩阵推导要烂熟烂熟烂熟!大样本的结论坚持都推一遍。 3、可以尝试着用计量了,记住如果你只有二三十个样本点,最好不要计量。如果你有50个左右,解释变量别超过三个。 学得挺闷吧,JEP 2001 FALL整整一本讲计量应用的,全是顶尖大牛,每人讲

39、一个方法,要求文章中公式不超过三个,巨精彩。什么非参半参,GMM(wooldridge),IV(angristkruger), VAR, GARCH(granger),等等等等。唉,太精彩了。去看看爽一下吧。 不太明白为什么GREEN的书在国内被称做圣经,其实就是在AMZON上,这本书得到很多负面评价。 Fumio Hayashi 的 Econometrics则是好评如潮。 (Hayashi的书国图有,武大有影印版。清华上两年上过洪永淼老师高级计量一的同学也有,可以COPY一下。) Russell Davidson, James G. Mackinnon 的 Econometric Theor

40、y and Methods也是一本使用比较广泛的教科书。 Takeshi Amemiya的 Advanced Econometrics 出版于1985年,是一本广受赞誉的书。 Arthur S. Goldberger 的A Course in Econometrics。 Goldberger还著有一本初级教科书 INTRODUCTORY ECONOMETRICS。 现在中国的学生真的很幸运,因为很多的书在国外出版不久,就被翻译或影印到国内了。 比如 两位时序领域的巨人 James H. Stock, Mark W. Watson 的初中级教科书 Introduction to Economet

41、rics, 我先是看到上海财经大学出了这本 书的影印本,接着又发现东北财经大学出版社 又出版了中文版。 出版周期真的是很快。 有的人除了是好的研究者,还是天生的好的教科书的作者、好的教授。比如已故的G. S. Maddala 教授,他和古扎拉第都是印度人。 他写的初级教科书 Introduction to Econometrics 3rd Edition,个人认为要比古扎拉第的好太多了。 你说的那些书我基本都有接触,个人也非常喜欢DAVIDSON&MACKINNON(2004),很好。对于想了解投影知识以得到回归的直观感觉的人,本书前2章是值得看的。此外,由于是新书,本书把BOOTSTRAP方

42、法贯彻始终,基本每一部分都有讨论。 但是这里申明一点,我个人在各种教科书上花的时间太多了,二楼说的都是好书,但是学完一本再学一本的方法是不足取的。太浪费时间了,毕竟,计量终归是作出来的!本人认为取其中之一二作为基础精读之即可,而woo和golderberger绝对是首选。 当认真学完goldberger后,进一步看哪本书实际都不费劲(除了时间序列需要花点时间),这个阶段该看论文和手册了。 对于MONTE CARLO和bootstrap,我认为应该尽早接触。来自高人的计量经济学书目汇编及简介忘记在哪里找到这篇文章了。也是一个老帖子。在整理博客空间的时候无意间看到。和大家分享一下。计量经济学入门:

43、Griffiths, W. E., R. C. Hill, and G. G. Judge, 1993, Learning and Practicing Econometrics, John Wiley & Sons.Johnston, J. and J. DiNardo, 1997, Econometric Methods, 4th ed., McGraw-Hill.(资格最老,我的启蒙书)Maddala, G. S., 1992, Introduction to Econometrics, 2nd ed., Prentice-Hall.Ramanathan, R., 1998, Intro

44、ductory Econometrics with Applications, 4th ed., The Dryden Press.(前四本似乎是大学部程度计量经济学教科书中最为流行者)Judge, G. G., W. E. Griffiths, R. C. Hill, T.-C. Lee, and H. Lutkepol, 1988, Introduction to the Theory and Practice of Econometrics, 2nd ed., John Wiley & Sons.Kennedy, P., 1998, A Guide to Econometrics, 4th. ed. The MIP Press. (本书尝试少用数学而多以文字来解释一些计量经济学的概念)Goldberger, A. S., 1991, A Course in Econometrics, Harvard University Press. (本书善用简单例子解释一些重要的基本观念,本书缺点在于未能包括一些新课题)Gujarati, D. N., 1995, Basic Econometrics, 3nd.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 工作计划

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁