《221、222直线与平面平行、平面与平面平行的判定.pptx》由会员分享,可在线阅读,更多相关《221、222直线与平面平行、平面与平面平行的判定.pptx(52页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2.2.1直线与平面直线与平面平行的判定平行的判定复习引入复习引入直线与平面有什么样的位置关系?直线与平面有什么样的位置关系? 复习引入复习引入直线与平面有什么样的位置关系?直线与平面有什么样的位置关系? (1)直线在平面内直线在平面内有无数个公共点;有无数个公共点; a复习引入复习引入直线与平面有什么样的位置关系?直线与平面有什么样的位置关系? (1)直线在平面内直线在平面内有无数个公共点;有无数个公共点;(2)直线与平面相交直线与平面相交有且只有一个有且只有一个 公共点;公共点; a aA复习引入复习引入直线与平面有什么样的位置关系?直线与平面有什么样的位置关系? (1)直线在平面内直线在
2、平面内有无数个公共点;有无数个公共点;(2)直线与平面相交直线与平面相交有且只有一个有且只有一个 公共点;公共点;(3)直线与平面平行直线与平面平行没有公共点没有公共点. a aAa讲授新课讲授新课如图,平面如图,平面 外的直线外的直线a平行于平面平行于平面 内内的直线的直线b.ab (1) 这两条直线共面吗?这两条直线共面吗?讲授新课讲授新课如图,平面如图,平面 外的直线外的直线a平行于平面平行于平面 内内的直线的直线b.ab (1) 这两条直线共面吗?这两条直线共面吗?(2) 直线直线 a与平面与平面 相交吗?相交吗? 平面外的一条直线与此平面内的一平面外的一条直线与此平面内的一条直线平行
3、,则该直线与此平面平行条直线平行,则该直线与此平面平行. 平面外的一条直线与此平面内的一平面外的一条直线与此平面内的一条直线平行,则该直线与此平面平行条直线平行,则该直线与此平面平行. ab 平面外的一条直线与此平面内的一平面外的一条直线与此平面内的一条直线平行,则该直线与此平面平行条直线平行,则该直线与此平面平行.(线线平行线线平行线面平行线面平行) ab符号表示:符号表示: 平面外的一条直线与此平面内的一平面外的一条直线与此平面内的一条直线平行,则该直线与此平面平行条直线平行,则该直线与此平面平行.(线线平行线线平行线面平行线面平行) ab符号表示:符号表示: /ababa 平面外的一条直
4、线与此平面内的一平面外的一条直线与此平面内的一条直线平行,则该直线与此平面平行条直线平行,则该直线与此平面平行.(线线平行线线平行线面平行线面平行) ab感受校园生活中线面平行的例子感受校园生活中线面平行的例子:感受校园生活中线面平行的例子感受校园生活中线面平行的例子:感受校园生活中线面平行的例子感受校园生活中线面平行的例子:球场地面球场地面练习练习1. 如图,长方体的六个面都是矩形,则如图,长方体的六个面都是矩形,则(1)与直线与直线AB平行的平面是平行的平面是:(2)与直线与直线AD平行的平面是平行的平面是:(3)与直线与直线AA1平行的平行的 平面是平面是:BD1C1A1B1ADC练习练
5、习1. 如图,长方体的六个面都是矩形,则如图,长方体的六个面都是矩形,则(1)与直线与直线AB平行的平面是平行的平面是:(2)与直线与直线AD平行的平面是平行的平面是:(3)与直线与直线AA1平行的平行的 平面是平面是:平面平面A1C1和平面和平面DC1 BD1C1A1B1ADC练习练习1. 如图,长方体的六个面都是矩形,则如图,长方体的六个面都是矩形,则(1)与直线与直线AB平行的平面是平行的平面是:(2)与直线与直线AD平行的平面是平行的平面是:(3)与直线与直线AA1平行的平行的 平面是平面是:平面平面A1C1和平面和平面DC1 平面平面BC1和平面和平面A1C1 BD1C1A1B1AD
6、C练习练习1. 如图,长方体的六个面都是矩形,则如图,长方体的六个面都是矩形,则(1)与直线与直线AB平行的平面是平行的平面是:(2)与直线与直线AD平行的平面是平行的平面是:(3)与直线与直线AA1平行的平行的 平面是平面是:平面平面A1C1和平面和平面DC1 平面平面BC1和平面和平面A1C1 平面平面BC1和和平面平面DC1BD1C1A1B1ADC定理的应用定理的应用ABCDEF定理的应用定理的应用分析:分析:要证明线面平行要证明线面平行只需证明线线平行,即只需证明线线平行,即在平面在平面BCD内找一条直内找一条直线平行于线平行于EF,由已知的,由已知的条件怎样找这条直线?条件怎样找这条
7、直线?ABCDEF定理的应用定理的应用分析:分析:要证明线面平行要证明线面平行只需证明线线平行,即只需证明线线平行,即在平面在平面BCD内找一条直内找一条直线平行于线平行于EF,由已知的,由已知的条件怎样找这条直线?条件怎样找这条直线?ABCDEF_.1.如图,在空间四边形如图,在空间四边形ABCD中,中,E、F分别为分别为AB、AD上的点,若上的点,若 ,则则EF与平面与平面BCD的位置关系是的位置关系是变式变式1FDAFEBAE ABCDEF_.1.如图,在空间四边形如图,在空间四边形ABCD中,中,E、F分别为分别为AB、AD上的点,若上的点,若 ,则则EF与平面与平面BCD的位置关系是
8、的位置关系是变式变式1FDAFEBAE EF/平面平面BCDABCDEF变式变式2ABCDFOE2. 如图,四棱锥如图,四棱锥ADBCE中,中,O为底面为底面正方形正方形DBCE对角线的交点,对角线的交点,F为为AE的的中点中点. 求证求证: AB/平面平面DCF.变式变式2ABCDFOE2. 如图,四棱锥如图,四棱锥ADBCE中,中,O为底面为底面正方形正方形DBCE对角线的交点,对角线的交点,F为为AE的的中点中点. 求证求证: AB/平面平面DCF.分析分析:变式变式2ABCDFOE分析分析: 连结连结OF,2. 如图,四棱锥如图,四棱锥ADBCE中,中,O为底面为底面正方形正方形DBC
9、E对角线的交点,对角线的交点,F为为AE的的中点中点. 求证求证: AB/平面平面DCF.变式变式2分析分析:ABE的中位线,的中位线,所以得到所以得到AB/OF.ABCDFOE连结连结OF,2. 如图,四棱锥如图,四棱锥ADBCE中,中,O为底面为底面正方形正方形DBCE对角线的交点,对角线的交点,F为为AE的的中点中点. 求证求证: AB/平面平面DCF.1. 线面平行,通常可以转化为线面平行,通常可以转化为线线平行线线平行 来处理来处理.反思反思领悟:领悟:1. 线面平行,通常可以转化为线面平行,通常可以转化为线线平行线线平行 来处理来处理.反思反思领悟:领悟:2. 寻找平行直线可以通过
10、寻找平行直线可以通过三角形的中位三角形的中位 线、梯形的中位线、平行线的判定线、梯形的中位线、平行线的判定等等 来完成来完成.1. 线面平行,通常可以转化为线面平行,通常可以转化为线线平行线线平行 来处理来处理.反思反思领悟:领悟:2. 寻找平行直线可以通过寻找平行直线可以通过三角形的中位三角形的中位 线、梯形的中位线、平行线的判定线、梯形的中位线、平行线的判定等等 来完成来完成.3. 证明的书写三个条件证明的书写三个条件“内内”、“外外”、 “平行平行”,缺一不可,缺一不可.巩固练习巩固练习2. 如图,正方体如图,正方体ABCD-A1B1C1D1中,中,E为为DD1的中点,求证的中点,求证:
11、BD1/平面平面AEC.ED1C1B1A1DCBA2.2.2平面与平面平面与平面平行的判定平行的判定定义:定义:如果两个平面没有公共点,那么这如果两个平面没有公共点,那么这两个平面互相平行,也叫做两个平面互相平行,也叫做平行平面平行平面. 定义:定义:如果两个平面没有公共点,那么这如果两个平面没有公共点,那么这两个平面互相平行,也叫做两个平面互相平行,也叫做平行平面平行平面.平面平面 平行于平面平行于平面 ,记作,记作 . (1)若平面若平面 内有一条直线与平面内有一条直线与平面 平行,平行,那么那么 , 平行吗?平行吗?思考思考(1)若平面若平面 内有一条直线与平面内有一条直线与平面 平行,
12、平行,那么那么 , 平行吗?平行吗?思考思考BD1C1A1B1ADC(1)若平面若平面 内有一条直线与平面内有一条直线与平面 平行,平行,那么那么 , 平行吗?平行吗?思考思考BD1C1A1B1ADCEF(1)若平面若平面 内有一条直线与平面内有一条直线与平面 平行,平行,那么那么 , 平行吗?平行吗?(2)若平面若平面 内有两条直线与平面内有两条直线与平面 平行,平行,那么那么 , 平行吗?平行吗?思考思考BD1C1A1B1ADCEF(1)若平面若平面 内有一条直线与平面内有一条直线与平面 平行,平行,那么那么 , 平行吗?平行吗?(2)若平面若平面 内有两条直线与平面内有两条直线与平面 平
13、行,平行,那么那么 , 平行吗?平行吗?思考思考BD1C1A1B1ADCEFP abP abP ab,Pbaba ./ , /ba符号:符号:平面与平面平行的判定定理平面与平面平行的判定定理P ab,Pbaba ./ , /ba符号:符号:例例2. 已知正方体已知正方体ABCD-A1B1C1D1,求证:平面求证:平面AB1D1平面平面C1BD.D1B1C1CDABA1棱长为棱长为a的正方体的正方体AC1中,设中,设M、N、E、F分别为棱分别为棱A1B1、A1D1、C1D1、B1C1的中点的中点.(1)求证:求证:E、F、B、D四点共面;四点共面;(2)求证:面求证:面AMN 面面EFBD.练习
14、练习ADD1A1B1C1BCEFNM棱长为棱长为a的正方体的正方体AC1中,设中,设M、N、E、F分别为棱分别为棱A1B1、A1D1、C1D1、B1C1的中点的中点.(1)求证:求证:E、F、B、D四点共面;四点共面;(2)求证:面求证:面AMN 面面EFBD.练习练习ADD1A1B1C1BCEFNMP abcdP 定理的推论定理的推论abcd课堂小结课堂小结3. 平面和平面平行的判定及推论平面和平面平行的判定及推论.1. 直线和平面平行的定义;直线和平面平行的定义;2. 直线和平面平行的判定;直线和平面平行的判定;1. 复习本节课内容,理清脉络;复习本节课内容,理清脉络; 2. 习案习案第十一课时第十一课时.课后作业课后作业