高中数学平面解析几何知识点归纳.docx

上传人:安*** 文档编号:19128726 上传时间:2022-06-04 格式:DOCX 页数:21 大小:22.53KB
返回 下载 相关 举报
高中数学平面解析几何知识点归纳.docx_第1页
第1页 / 共21页
高中数学平面解析几何知识点归纳.docx_第2页
第2页 / 共21页
点击查看更多>>
资源描述

《高中数学平面解析几何知识点归纳.docx》由会员分享,可在线阅读,更多相关《高中数学平面解析几何知识点归纳.docx(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、高中数学平面解析几何知识点归纳高中数学平面解析几何知识点归纳高中数学平面解析几何知识点有哪些你知道吗?近年的高中数学解答题多呈现为多问渐难式的“梯度题,解答时不必一气审到底,应走一步解决一步,一起来看看高中数学平面解析几何知识点,欢迎查阅!高中数学平面解析几何知识点平面解析几何初步:直线与方程是解析几何的基础,是高考重点考察的内容,单独考察多以选择题、填空题出现;间接考察则以直线与圆、椭圆、双曲线、抛物线等知识综合为主,多为中、高难度试题,往往作为把关题出如今高考题目中。直接考察主要考察直线的倾斜角、直线方程,两直线的位置关系,点到直线的距离,对称问题等,间接考察一定会出如今高考试卷中,主要考

2、察直线与圆锥曲线的综合问题。圆的问题主要涉及圆的方程、直线与圆的位置关系、圆与圆的位置关系以及圆的集合性质的讨论,难度中等或偏易,多以选择题、填空题的形式出现,其中热门为圆的切线问题。空间直角坐标系是平面直角坐标系在空间的推广,在解决空间问题中具有重要的作业,空间向量的坐标运算就是在空间直角坐标系下实现的。空间直角坐标系也是解答立体几何问题的重要工具,一般是与空间向量在坐标运算结合起来运用,也不排除出现考察基础知识的选择题和填空题。高中数学平面解析几何知识点平面解析几何,又称解析几何(英语:Analyticgeometry)、坐标几何(英语:Coordinategeometry)或卡氏几何(英

3、语:Cartesiangeometry),早先被叫作笛卡儿几何,是一种借助于解析式进行图形研究的几何学分支。解析几何通常使用二维的平面直角坐标系研究直线、圆、圆锥曲线、摆线、星形线等各种一般平面曲线,使用三维的空间直角坐标系来研究平面、球等各种一般空间曲面,同时研究它们的方程,并定义一些图形的概念和参数。平面解析几何基本理论坐标在解析几何当中,平面给出了坐标系,即每个点都有对应的一对实数坐标。最常见的是笛卡儿坐标系,其中,每个点都有x-坐标对应水平位置,和y-坐标对应垂直位置。这些常写为有序对(x,y)。这种系统可以以被用在三维几何当中,空间中的每个点都以多元组呈现(x,y,z)。坐标系也以其

4、它形式出现。在平面中最常见的另类坐标系是极坐标系,其中每个点都以从原点出发的半径r和角度表示。在三维空间中,最常见的另类坐标系统是圆柱坐标系和球坐标系。曲线方程在解析几何当中,任何方程都包含确定面的子集,即方程的解集。例如,方程y=x在平面上对应的是所有x-坐标等于y-坐标的解集。这些点聚集成为一条直线,y=x被称为这道方程的直线。总而言之,线性方程中x和y定义线,一元二次方程定义圆锥曲线,更复杂的方程则阐述更复杂的形象。通常,一个简单的方程对应平面上的一条曲线。但这不一定如此:方程x=x对应整个平面,方程x2+y2=0只对应(0,0)一点。在三维空间中,一个方程通常对应一个曲面,而曲线经常代

5、表两个曲面的交集,或一条参数方程。方程x2+y2=r代表了是半径为r且圆心在(0,0)上的所有圆。距离和角度在解析几何当中,距离、角度等几何概念是用公式来表达的。这些定义与背后的欧几里得几何所蕴含的主旨相符。例如,使用平面笛卡儿坐标系时,两点A(x1,y1),B(x2,y2)之间的距离d(又写作|AB|被定义为上述可被以为是一种勾股定理的形式。类似地,直线与水平线所成的角能够定义为其中m是线的斜率。变化变化能够使母方程变为新方程,但保持原有的特性。交集主题问题编辑解析几何中的重要问题:向量空间平面的定义距离问题点积求两个向量的角度外积求一向量垂直于两个已知向量(以及它们的空间体积)平面解析几何

6、初步综合检测一、选择题(本大题共12小题,在每题给出的四个选项中,只要一项是符合题目要求的)1.直线3ax-y-1=0与直线(a-23)x+y+1=0垂直,则a的值是()A.-1或13B.1或13C.-13或-1D.-13或1解析:选D.由3a(a-23)+(-1)1=0,得a=-13或a=1.2.直线l1:ax-y+b=0,l2:bx-y+a=0(a0,b0,ab)在同一坐标系中的图形大致是图中的()解析:选C.直线l1:ax-y+b=0,斜率为a,在y轴上的截距为b,设k1=a,m1=b.直线l2:bx-y+a=0,斜率为b,在y轴上的截距为a,设k2=b,m2=a.由A知:由于l1l2,

7、k1=k20,m10,即a=b0,b0,矛盾.由B知:k1k2,m10,即ab,b0,矛盾.由C知:k10,m20,即a0,能够成立.由D知:k10,m2m1,即a0,ab,矛盾.3.已知点A(-1,1)和圆C:(x-5)2+(y-7)2=4,一束光线从A经x轴反射到圆C上的最短路程是()A.62-2B.8C.46D.10解析:选B.点A关于x轴对称点A(-1,-1),A与圆心(5,7)的距离为5+12+7+12=10.所求最短路程为10-2=8.4.圆x2+y2=1与圆x2+y2=4的位置关系是()A.相离B.相切C.相交D.内含解析:选D.圆x2+y2=1的圆心为(0,0),半径为1,圆x

8、2+y2=4的圆心为(0,0),半径为2,则圆心距02-1=1,所以两圆内含.5.已知圆C:(x-a)2+(y-2)2=4(a0)及直线l:x-y+3=0,当直线l被圆C截得的弦长为23时,a的值等于()A.2B.2-1C.2-2D.2+1解析:选B.圆心(a,2)到直线l:x-y+3=0的距离d=|a-2+3|2=|a+1|2,依题意|a+1|22+2322=4,解得a=2-1.6.与直线2x+3y-6=0关于点(1,-1)对称的直线是()A.3x-2y-6=0B.2x+3y+7=0C.3x-2y-12=0D.2x+3y+8=0解析:选D.所求直线平行于直线2x+3y-6=0,设所求直线方程

9、为2x+3y+c=0,由|2-3+c|22+32=|2-3-6|22+32,c=8,或c=-6(舍去),所求直线方程为2x+3y+8=0.7.若直线y-2=k(x-1)与圆x2+y2=1相切,则切线方程为()A.y-2=34(1-x)B.y-2=34(x-1)C.x=1或y-2=34(1-x)D.x=1或y-2=34(x-1)解析:选B.数形结合答案容易错选D,但要注意直线的表达式是点斜式,讲明直线的斜率存在,它与直线过点(1,2)要有所区分.8.圆x2+y2-2x=3与直线y=ax+1的公共点有()A.0个B.1个C.2个D.随a值变化而变化解析:选C.直线y=ax+1过定点(0,1),而该

10、点一定在圆内部.9.过P(5,4)作圆C:x2+y2-2x-2y-3=0的切线,切点分别为A、B,四边形PACB的面积是()A.5B.10C.15D.20解析:选B.圆C的圆心为(1,1),半径为5.|PC|=5-12+4-12=5,|PA|=|PB|=52-52=25,S=122552=10.10.若直线mx+2ny-4=0(m、nR,nm)始终平分圆x2+y2-4x-2y-4=0的周长,则mn的取值范围是()A.(0,1)B.(0,-1)C.(-,1)D.(-,-1)解析:选C.圆x2+y2-4x-2y-4=0可化为(x-2)2+(y-1)2=9,直线mx+2ny-4=0始终平分圆周,即直

11、线过圆心(2,1),所以2m+2n-4=0,即m+n=2,mn=m(2-m)=-m2+2m=-(m-1)2+11,当m=1时等号成立,此时n=1,与“mn矛盾,所以mn1.11.已知直线l:y=x+m与曲线y=1-x2有两个公共点,则实数m的取值范围是()A.(-2,2)B.(-1,1)C.1,2)D.(-2,2)解析:选C.曲线y=1-x2表示单位圆的上半部分,画出直线l与曲线在同一坐标系中的图象,可观察出仅当直线l在过点(-1,0)与点(0,1)的直线与圆的上切线之间时,直线l与曲线有两个交点.当直线l过点(-1,0)时,m=1;当直线l为圆的上切线时,m=2(注:m=-2,直线l为下切线

12、).12.过点P(-2,4)作圆O:(x-2)2+(y-1)2=25的切线l,直线m:ax-3y=0与直线l平行,则直线l与m的距离为()A.4B.2C.85D.125解析:选A.点P在圆上,切线l的斜率k=-1kOP=-11-42+2=43.直线l的方程为y-4=43(x+2),即4x-3y+20=0.又直线m与l平行,直线m的方程为4x-3y=0.故两平行直线的距离为d=|0-20|42+-32=4.二、填空题(本大题共4小题,请把答案填在题中横线上)13.过点A(1,-1),B(-1,1)且圆心在直线x+y-2=0上的圆的方程是_.解析:易求得AB的中点为(0,0),斜率为-1,进而其垂

13、直平分线为直线y=x,根据圆的几何性质,这条直线应该过圆心,将它与直线x+y-2=0联立得到圆心O(1,1),半径r=|OA|=2.答案:(x-1)2+(y-1)2=414.过点P(-2,0)作直线l交圆x2+y2=1于A、B两点,则|PA|PB|=_.解析:过P作圆的切线PC,切点为C,在RtPOC中,易求|PC|=3,由切割线定理,|PA|PB|=|PC|2=3.答案:315.若垂直于直线2x+y=0,且与圆x2+y2=5相切的切线方程为ax+2y+c=0,则ac的值为_.解析:已知直线斜率k1=-2,直线ax+2y+c=0的斜率为-a2.两直线垂直,(-2)(-a2)=-1,得a=-1.

14、圆心到切线的距离为5,即|c|5=5,c=5,故ac=5.答案:516.若直线3x+4y+m=0与圆x2+y2-2x+4y+4=0没有公共点,则实数m的取值范围是_.解析:将圆x2+y2-2x+4y+4=0化为标准方程,得(x-1)2+(y+2)2=1,圆心为(1,-2),半径为1.若直线与圆无公共点,即圆心到直线的距离大于半径,即d=|31+4-2+m|32+42=|m-5|51,m0或m10.答案:(-,0)(10,+)三、解答题(本大题共6小题,解答时应写出必要的文字讲明、证实经过或演算步骤)17.三角形ABC的边AC,AB的高所在直线方程分别为2x-3y+1=0,x+y=0,顶点A(1

15、,2),求BC边所在的直线方程.解:AC边上的高线2x-3y+1=0,所以kAC=-32.所以AC的方程为y-2=-32(x-1),即3x+2y-7=0,同理可求直线AB的方程为x-y+1=0.下面求直线BC的方程,由3x+2y-7=0,x+y=0,得顶点C(7,-7),由x-y+1=0,2x-3y+1=0,得顶点B(-2,-1).所以kBC=-23,直线BC:y+1=-23(x+2),即2x+3y+7=0.18.一束光线l自A(-3,3)发出,射到x轴上,被x轴反射后与圆C:x2+y2-4x-4y+7=0有公共点.(1)求反射光线通过圆心C时,光线l所在直线的方程;(2)求在x轴上,反射点M

16、的横坐标的取值范围.解:圆C的方程可化为(x-2)2+(y-2)2=1.(1)圆心C关于x轴的对称点为C(2,-2),过点A,C的直线的方程x+y=0即为光线l所在直线的方程.(2)A关于x轴的对称点为A(-3,-3),设过点A的直线为y+3=k(x+3).当该直线与圆C相切时,有|2k-2+3k-3|1+k2=1,解得k=43或k=34,所以过点A的圆C的两条切线分别为y+3=43(x+3),y+3=34(x+3).令y=0,得x1=-34,x2=1,所以在x轴上反射点M的横坐标的取值范围是-34,1.19.已知圆x2+y2-2x-4y+m=0.(1)此方程表示圆,求m的取值范围;(2)若(

17、1)中的圆与直线x+2y-4=0相交于M、N两点,且OMON(O为坐标原点),求m的值;(3)在(2)的条件下,求以MN为直径的圆的方程.解:(1)方程x2+y2-2x-4y+m=0,可化为(x-1)2+(y-2)2=5-m,此方程表示圆,5-m0,即m5.(2)x2+y2-2x-4y+m=0,x+2y-4=0,消去x得(4-2y)2+y2-2(4-2y)-4y+m=0,化简得5y2-16y+m+8=0.设M(x1,y1),N(x2,y2),则y1+y2=165,y1y2=m+85.由OMON得y1y2+x1x2=0即y1y2+(4-2y1)(4-2y2)=0,16-8(y1+y2)+5y1y

18、2=0.将两式代入上式得16-8165+5m+85=0,解之得m=85.(3)由m=85,代入5y2-16y+m+8=0,化简整理得25y2-80y+48=0,解得y1=125,y2=45.x1=4-2y1=-45,x2=4-2y2=125.M-45,125,N125,45,MN的中点C的坐标为45,85.又|MN|=125+452+45-1252=855,所求圆的半径为455.所求圆的方程为x-452+y-852=165.20.已知圆O:x2+y2=1和定点A(2,1),由圆O外一点P(a,b)向圆O引切线PQ,切点为Q,|PQ|=|PA|成立,如图.(1)求a、b间关系;(2)求|PQ|的

19、最小值;(3)以P为圆心作圆,使它与圆O有公共点,试在其中求出半径最小的圆的方程.解:(1)连接OQ、OP,则OQP为直角三角形,又|PQ|=|PA|,所以|OP|2=|OQ|2+|PQ|2=1+|PA|2,所以a2+b2=1+(a-2)2+(b-1)2,故2a+b-3=0.(2)由(1)知,P在直线l:2x+y-3=0上,所以|PQ|min=|PA|min,为A到直线l的距离,所以|PQ|min=|22+1-3|22+12=255.(或由|PQ|2=|OP|2-1=a2+b2-1=a2+9-12a+4a2-1=5a2-12a+8=5(a-1.2)2+0.8,得|PQ|min=255.)(3)

20、以P为圆心的圆与圆O有公共点,半径最小时为与圆O相切的情形,而这些半径的最小值为圆O到直线l的距离减去圆O的半径,圆心P为过原点与l垂直的直线l与l的交点P0,所以r=322+12-1=355-1,又l:x-2y=0,联立l:2x+y-3=0得P0(65,35).所以所求圆的方程为(x-65)2+(y-35)2=(355-1)2.21.有一圆与直线l:4x-3y+6=0相切于点A(3,6),且经过点B(5,2),求此圆的方程.解:法一:由题意可设所求的方程为(x-3)2+(y-6)2+(4x-3y+6)=0,又由于此圆过点(5,2),将坐标(5,2)代入圆的方程求得=-1,所以所求圆的方程为x

21、2+y2-10x-9y+39=0.法二:设圆的方程为(x-a)2+(y-b)2=r2,则圆心为C(a,b),由|CA|=|CB|,CAl,得3-a2+6-b2=r2,5-a2+2-b2=r2,b-6a-343=-1,解得a=5,b=92,r2=254.所以所求圆的方程为(x-5)2+(y-92)2=254.法三:设圆的方程为x2+y2+Dx+Ey+F=0,由CAl,A(3,6),B(5,2)在圆上,得32+62+3D+6E+F=0,52+22+5D+2E+F=0,-E2-6-D2-343=-1,解得D=-10,E=-9,F=39.所以所求圆的方程为x2+y2-10x-9y+39=0.法四:设圆

22、心为C,则CAl,又设AC与圆的另一交点为P,则CA的方程为y-6=-34(x-3),即3x+4y-33=0.又由于kAB=6-23-5=-2,所以kBP=12,所以直线BP的方程为x-2y-1=0.解方程组3x+4y-33=0,x-2y-1=0,得x=7,y=3.所以P(7,3).所以圆心为AP的中点(5,92),半径为|AC|=52.所以所求圆的方程为(x-5)2+(y-92)2=254.22.如图在平面直角坐标系xOy中,已知圆C1:(x+3)2+(y-1)2=4和圆C2:(x-4)2+(y-5)2=4.(1)若直线l过点A(4,0),且被圆C1截得的弦长为23,求直线l的方程;(2)设

23、P为平面上的点,知足:存在过点P的无穷多对相互垂直的直线l1和l2,它们分别与圆C1和C2相交,且直线l1被圆C1截得的弦长与直线l2被C2截得的弦长相等.试求所有知足条件的点P的坐标.解:(1)由于直线x=4与圆C1不相交,所以直线l的斜率存在.设直线l的方程为y=k(x-4),圆C1的圆心到直线l的距离为d,由于圆C1被直线l截得的弦长为23,所以d=22-32=1.由点到直线的距离公式得d=|1-k-3-4|1+k2,进而k(24k+7)=0,即k=0或k=-724,所以直线l的方程为y=0或7x+24y-28=0.(2)设点P(a,b)知足条件,不妨设直线l1的方程为y-b=k(x-a

24、),k0,则直线l2的方程为y-b=-1k(x-a).由于圆C1和C2的半径相等,且圆C1被直线l1截得的弦长与圆C2被直线l2截得的弦长相等,所以圆C1的圆心到直线l1的距离和圆C2的圆心到直线l2的距离相等,即|1-k-3-a-b|1+k2=|5+1k4-a-b|1+1k2,整理得|1+3k+ak-b|=|5k+4-a-bk|,进而1+3k+ak-b=5k+4-a-bk或1+3k+ak-b=-5k-4+a+bk,即(a+b-2)k=b-a+3或(a-b+8)k=a+b-5,由于k的取值有无穷多个,所以a+b-2=0,b-a+3=0,或a-b+8=0,a+b-5=0,解得a=52,b=-12,或a=-32,b=132.这样点P只可能是点P152,-12或点P2-32,132.经检验点P1和P2知足题目条件.高中数学平面解析几何知识点归纳

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 文案大全

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁