《财务预警模型的实证研究.docx》由会员分享,可在线阅读,更多相关《财务预警模型的实证研究.docx(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、财务预警模型的实证研究财务预警模型的实证研究ThismanuscriptwasrevisedbytheofficeonDecember10,2020.全流通条件下上市公司财务危机预警模型的实证研究课题研究人:张宪、郝力平、涂春辉、王法力、洪明、刘年财选送单位:航空证券有限责任公司内容提要本文选择了在2006年1月至2006年6月期间,在2005年年报公布后,因财务状况异常而初次被ST的53家上市公司,同时选取同行业按证监会行业代码分类、同规模的53家非ST公司作为配对样本。本文从财务指标的角度出发,在了解我国上市公司财务困难成因的基础上,讨论了各财务因素之间的关系以及它们对上市公司发生财务困难
2、的预警作用。本文的创新点在于,采用了最新的公司财务数据,改良了数据处理的方式,在因子分析的基础上利用二分类Logistic回归建立了财务困难的预警模型,该模型的预测效果优于现有的研究结论。同时,本文还针对全流通之后新的市场环境,将“股票总市值/负债总额指标引入模型讨论。本文得到的结论如下。1从统计描绘的角度,ST公司与非ST公司在已获利息倍数、销售净利率、资产净利率、净资产收益率、应收帐款周转、现金流动负债比等指标上有明显差异,而在速动比率、流动比率、销售毛利率、营业利润比重等指标上差距不大,且有穿插现象。2从单变量分析的角度,已获利息倍数、资产负债率、流动比率、销售净利率、资产净利率、总资产
3、周转率、存货周转率、销售现金比率、现金债务总额比、全部资产现金回收率、现金流动负债比等指标,能在=的较小显着性水平下与公司的财务困难情况显着相关。3从多元回归的角度,通过因子分析处理原始数据,然后利用二分类Logistic回归建立了财务困难的预警模型1,对现有数据的判定准确率为%。考虑到全流通之后的市场现实,本文以为股票市值对上市公司的影响不容忽视,“股票总市值/负债总额这一指标引入预测模型。同样是通过因子分析处理原始数据,利用二分类Logistic回归建立了财务困难的预警模型2,对现有数据的判定准确率为%。这两个模型的预测效果都超过90%,准确率基本一致,优于目前的研究结论。本文以为,由于模
4、型2的结果遭到了历史数据的局限,股票市值对于财务预警模型的作用尚未得到体现。将来随着全流通市场的进一步规范和成熟,市值考核为指标的股权价值鼓励政策的逐步推广,股票市值对于财务预警模型的作用继续值得今后进一步深化研究。目录1、前言(3)2、文献综述(3)3、样本选取和研究方法(4)研究样本(4)研究数据(5)研究变量(5)研究方法(6)4、样本变量统计描绘(6)5、单变量研究(7)独立样本的均值比拟方法(7)T检验分析结果(8)6、多元回归分析(8)样本及数据(9)Logistic多元回归分析96.2.1多元回归方法选择(9)6.2.2用因子分析对数据预处理(9)6.2.3Logistic回归建
5、立预警模型1(11)将股票市值因素引入,建立预警模型2(13)7结论(18)1前言财务危机给企业和社会带来了严重的影响,适时、准确地对企业财务危机进行预测分析是市场竞争机制的客观要求。因而,利用相关信息构建有效的财务危机预警模型,进而获得财务状况恶化的上市公司预警信号,对于投资者、债权人、经营者以及监管者等众多方面无疑都具有重要的现实意义。财务危机Financialcrisis又称财务窘境Financialdistress,国外多数同类研究采用破产标准Altman,1968;Ohlson,1971;Plattandplatt,1990and1994。但考虑到中国的实际情况,国内学者大都将十分处
6、理ST的上市公司作为存在财务危机的上市公司陈静,1999;李华中,2001。本文采用以上学者的思路,将ST公司作为研究样本,并将“财务危机定义为“因财务状况异常而被十分处理ST。本文在上市公司财务预警模型的构建中,首先以描绘统计和单变量分析对影响企业的财务危机的因素做出初步判定,在此基础上建立多变量判定模型,通过因子分析处理数据,利用二分类Logistic回归建立财务困难的预警模型,对样本企业做出综合评判。同时,本文针对全流通之后的市场变化,对于股票市值在财务预警中的作用进行了积极的讨论。2文献综述国外关于财务失败预测研究影响最广泛的是威廉比弗WillianBeaver的单一变量模型和阿尔特曼
7、EdwardI.Altiman的“Z-Score模型。比弗通过对1945年1964年间79家失败企业和对应的79家成功企业的比拟研究表明,下列财务比率对预测财务失败是最有效的:现金流量/债务总额,净收益/资产总额资产收益率,债务总额/资产总额资产负债率。美国财务专家阿尔特曼1968提出的企业失败预测模型是以营运资金/资产总额、留存收益/资产总额、息税前利润/资产总额、普通股及优先股市价/负债总额、销售总额/资产总额等五项财务比率的加权平均数来测试财务失败的。该模型主要针对于上市公司,样本包括了1946年1965年间提出破产申请的33家公司和同样数量的非破产公司。通过计算,该模型产生了一个总的判
8、别分,成为Z值。Z值越低,企业发生财务失败的可能性就越大。同时确定了Z值实际截止点用以判定。阿尔特曼将各种有关的比率合并成单一的预测指数,克制了单个比率内容有限、无法全面揭示企业财务状况的缺点。奥尔逊Ohlson,1980提出一种logit模型。该模型建立在累积概率函数的基础上,而不需要知足自变量服从多元正态分布和两组协方差相等的条件。Logit模型另一个重要优点是在0,1上预测一个公司能否发生财务危机的几率。在国内,学者周首华等1996对阿尔特曼的“Z-score模型进行了一定的拓展,建立了“F分数形式,F分数形式的临界值是,此数值上下为所谓的不确定区域,F分数越小,则公司发生财务危机的可能
9、性越大。陈静1999根据1995年至1997年54家样本企业财务资料,分别进行了单变量和多变量分析,得出结论是在公布前一年预警模型的成功率较高,离公布日越远,则成功率越低。吴世农、卢贤义2001对上市公司财务危机预警研究成果表明:1我国上市公司财务窘境具有可预测性。2在单变量模型中,净资产报酬率的断定效果较好。3多变量模型优于单变量断定模型。4比拟多变量模型下的3种模型,logit模型的断定准确性最高。李炳承2004选取了105家ST公司与105家非ST公司的配对样本进行均值和总样本均值差异分析,研究发现,财务征兆主要表现为:留存收益和营运资本短缺、应收项目和短期借款多、营业利润低等。陈晓、陈
10、治鸿2000以70家公司组成分析样本,通过每大类财务指标中分别选取一个指标来进行检验,以为营运资本与总资产比率、负债权益比、应收帐款周转率、主营利润与总资产比率、非主营利润与总资产比率、留存收益与总资产比率这6个指标的财务窘境预测效果最好。3样本选取和研究方法研究样本本文选择了在2006年1月至2006年6月期间,在2005年年报公布后,因财务状况异常而初次被ST的53家上市公司,为了更好地研究样本的特征,我们同时选取同行业按证监会行业代码分类、同规模的53家非ST公司作为配对样本。在选取样本时我们注意下面问题:1考虑到ST公司是由于2005年报公布后,连续2年亏损而导致被ST的。在选择观测年
11、限时,取被ST前1年的财务年度的财务指标,即选择2004年的财务指标,对应的配对样本取同期的财务指标。2为了使样本更具有代表性,对非ST公司的选取是在保持同行业、同规模的原则下选取。3非ST的样本选取同行业为第一选择标准,即在资产规模不同的情况下,保持行业的一致性。4对ST样本的选择时,由于本文目的在于研究财务信息对财务预警的作用,因而剔除了有下面几种情况的公司:被注册会计师出具无法表示意见或否认意见的审计报告;追溯调整导致近期两年连续亏损;在法定期限内未依法披露定期报告;在规定期限内未对存在重大会计过失或虚假财务会计报告进行改正;主营业务所属行业发生变化的,行业归属不符合证监会行业要求的。研
12、究数据本文中的数据均来自Wind资讯金融终端。首先从Wind资讯金融终端找出2006年内被ST的公司信息,然后再根据同行业、同规模的原则查找对应的配对样本,提取样本的财务数据。数据是运用进行处理分析的。研究变量根据我国上市公司的特点,本文分别从偿债能力、盈利能力、运营能力、现金流量等4个方面选择了19个财务指标,作为构建财务危机预警模型的预选指标。研究方法本文主要对样本进行截面分析和回归分析。1描绘性分析。2单变量分析。通过对ST公司的19个财务指标与非ST公司同期指标的均值差异进行T值检验,以证实它们的显着性差异以及对区分财务困难公司的作用。3多变量分析。根据单变量分析的结果,选取ST公司与
13、非ST公司之间具有显着性差异的财务指标变量进行多元回归分析,先通过因子分析处理数据,然后利用二分类Logistic回归建立财务困难的预警模型并检验。4样本变量统计描绘本文首先对样本的财务指标变量进行基本统计量描绘分析,将样本分为ST类和非ST类,结果见表2。从表2中我们能够看出,ST公司与非ST公司有很多指标存在很大差距,例如X1、X6、X7、X8、X13、X19等指标。ST公司的应收帐款周转率平均值为,而同期非ST公司的应收帐款周转率为,讲明与ST公司相比非ST公司的应收帐款变现能力强。ST公司的销售净利率平均值为,而同期非ST公司的销售净利率为,这表明ST公司与非ST公司之间平均盈利能力相
14、差宏大。ST公司的已获利息倍数平均值为,而同期非ST公司的已获利息倍数为,讲明ST公司的财务负担明显高于非ST公司。同时,有些财务指标ST公司与非ST公司差距不大,而且出现穿插现象,如X3、X4、X9、X10等指标。5单变量研究通过独立样本的均值比拟,分析ST公司与非ST公司各单项财务指标的差异规律。假设:H0:ST公司与非ST公司19个财务指标同期均值相等H1:ST公司与非ST公司19个财务指标同期均值不相等独立样本的均值比拟方法应用T检验,能够检验独立的正态总体下样本均值之间能否具有显着性差异。进行两个独立正态总体下样本均值的比拟时,根据方差齐与不齐两种情况,应用不同的统计量进行检验。方差
15、不齐时,统计量为X-YT=公式1式中,X和Y表示样本1和样本2的均值;2XS和2YS为样本1和样本2的方差,m和n为样本1和样本2的数据个数。方差齐时,采用的统计量为XYT=公式2式中,WS为两个样本的标准差,它是样本1的方差和样本2的方差的加权平均值的方根,计算公式如下:WS=公式3当两个总体的均值差异不显着时,该统计量应服从自由度为m+n-2的t分布。T检验的结果包括t值t、自由度df、双尾显着性检验sig.2-tailed、均值差异MeanDifference、均值差异的标准误差Std.ErrorDifference和均值差异的95%置信区间95%ConfidenceIntervalof
16、theDifference。T检验分析结果给定显着性水平为,根据运行的结果,对各个财务指标变量的显着性差异的判定情况如下。从上面的实证分析能够看出,指标X1已获利息倍数、X2资产负债率、X3速动比率、X4流动比率、X6销售净利率、X7资产净利率、X9销售毛利率、X11总资产周转率、X12存货周转率、X14流动资产周转率、X16销售现金比率、X17现金债务总额比、X18全部资产现金回收率、X19现金流动负债比等14个指标能在很少的显着性水平下拒绝原假设,而接受备选假设。这就意味着ST公司与非ST公司在ST前1年的上述14个指标具有明显的差异。6多元回归分析上述14个指标的均值差异能明显地区别出S
17、T公司与非ST公司的财务特征。但是在实际操作中,我们是需要预测一个企业的财务状况,仅仅区分财务特征是不够的。为此我们运用多元回归来分析并检验其模型的预测准确性。样本及数据我们仍然选取上述53家ST公司和非ST公司数据。根据截面分析的结果,我们将有显着性差异的14个财务指标已获利息倍数、资产负债率、速动比率、流动比率、销售净利率、资产净利率、销售毛利率、总资产周转率、存货周转率、流动资产周转率、销售现金比率、现金债务总额比、全部资产现金回收率、现金流动负债比作为输入变量。Logistic多元回归分析6.2.1多元回归方法选择在多元回归方法的选择上,我们根据数据的特点,首先进行因子分析,然后采用二分类Logistic多元回归法建立模型并加以检验。详细步骤如下,(1)引入虚拟变量Y用以表示能否出现财务危机。Y取1表示ST公司,Y取0表示非ST公司。