机器人学导论chapter4.docx

上传人:安*** 文档编号:19006978 上传时间:2022-06-03 格式:DOCX 页数:24 大小:126.99KB
返回 下载 相关 举报
机器人学导论chapter4.docx_第1页
第1页 / 共24页
机器人学导论chapter4.docx_第2页
第2页 / 共24页
点击查看更多>>
资源描述

《机器人学导论chapter4.docx》由会员分享,可在线阅读,更多相关《机器人学导论chapter4.docx(24页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、机器人学导论chapter4Chapter4PlanarKinematicsKinematicsisGeometryofMotion.Itisoneofthemostfundamentaldisciplinesinrobotics,providingtoolsfordescribingthestructureandbehaviorofrobotmechanisms.Inthischapter,wewilldiscusshowthemotionofarobotmechanismisdescribed,howitrespondstoactuatormovements,andhowtheindivi

2、dualactuatorsshouldbecoordinatedtoobtaindesiredmotionattherobotend-effecter.Thesearequestionscentraltothedesignandcontrolofrobotmechanisms.Tobeginwith,wewillrestrictourselvestoaclassofrobotmechanismsthatworkwithinaplane,i.e.PlanarKinematics.Planarkinematicsismuchmoretractablemathematically,comparedt

3、ogeneralthree-dimensionalkinematics.Nonetheless,mostoftherobotmechanismsofpracticalimportancecanbetreatedasplanarmechanisms,orcanbereducedtoplanarproblems.Generalthree-dimensionalkinematics,ontheotherhand,needsspecialmathematicaltools,whichwillbediscussedinlaterchapters.4.1PlanarKinematicsofSerialLi

4、nkMechanismsExample4.1Considerthethreedegree-of-freedomplanarrobotarmshowninFigure4.1.1.Thearmconsistsofonefixedlinkandthreemovablelinksthatmovewithintheplane.Allthelinksareconnectedbyrevolutejointswhosejointaxesareallperpendiculartotheplaneofthelinks.Thereisnoclosed-loopkinematicchain;hence,itisase

5、riallinkmechanism.Figure4.1.1ThreedofplanarrobotwiththreerevolutejointsTodescribethisrobotarm,afewgeometricparametersareneeded.First,thelengthofeachlinkisdefinedtobethedistancebetweenadjacentjointaxes.LetpointsO,A,andBbethelocationsofthethreejointaxes,respectively,andpointEbeapointfixedtotheend-effe

6、cter.ThenthelinklengthsareEBBAAO=321,AAA.LetusassumethatActuator1drivinglink1isfixedtothebaselink(link0),generatingangle1,whileActuator2drivinglink2isfixedtothetipofLink1,creatingangle2betweenthetwolinks,andActuator3drivingLink3isfixedtothetipofLink2,creatingangle3,asshowninthefigure.Sincethisrobota

7、rmperformstasksbymovingitsend-effecteratpointE,weareconcernedwiththelocationoftheend-effecter.Todescribeitslocation,weuseacoordinatesystem,O-xy,fixedtothebaselinkwiththeoriginatthefirstjoint,anddescribetheend-effecterpositionwithcoordinateseande.Wecanrelatetheend-effectercoordinatestothejointanglesd

8、eterminedbythethreeactuatorsbyusingthelinklengthsandjointanglesdefinedabove:xy)cos()cos(cos321321211+=AAAex(4.1.1)sin()sin(sin321321211+=AAAey(4.1.2)Thisthreedofrobotarmcanlocateitsend-effecteratadesiredorientationaswellasatadesiredposition.Theorientationoftheend-effectercanbedescribedastheanglethec

9、enterlineoftheend-effectermeasuredfromthepositivexcoordinateaxis.Thisend-effecterorientationeisrelatedtotheactuatordisplacementsas321+=e(4.1.3)viewedfromthefixedcoordinatesysteminrelationtotheactuatordisplacements.Ingeneral,asetofalgebraicequationsrelatingthepositionandorientationofarobotend-effecte

10、r,oranysignificantpartoftherobot,toactuatororactivejointdisplacements,iscalledKinematicEquations,ormorespecifically,ForwardKinematicEquationsintheroboticsliterature.Exercise4.1ShownbelowinFigure4.1.2isaplanarrobotarmwithtworevolutejointsandoneprismaticjoint.Usingthegeometricparametersandjointdisplac

11、ements,obtainthekinematicequationsrelatingtheend-effecterpositionandorientationtothejointdisplacements.Figure4.1.2ThreedofrobotwithtworevolutejointsandoneprismaticjointNowthattheaboveExampleandExerciseproblemshaveillustratedkinematicequations,letusobtainaformalexpressionforkinematicequations.Asmenti

12、onedinthepreviouschapter,twotypesofjoints,prismaticandrevolutejoints,constituterobotmechanismsinmostcases.Thedisplacementofthei-thjointisdescribedbydistancediifitisaprismaticjoint,andbyangleiforarevolutejoint.Forformalexpression,letususeagenericnotation:qi.Namely,jointdisplacementqirepresentseitherd

13、istancediorangleidependingonthetypeofjoint.iiidq=(4.1.4)PrismaticjointRevolutejointWecollectivelyrepresentallthejointdisplacementsinvolvedinarobotmechanismwithacolumnvector:,wherenisthenumberofjoints.Kinematicequationsrelatethesejointdisplacementstothepositionandorientationoftheend-effecter.Letuscol

14、lectivelydenotetheend-effecterpositionandorientationbyvectorp.Forplanarmechanisms,theend-effecterlocationisdescribedbythreevariables:Tnqqqq21=?=eeeyxp(4.1.5)Usingthesenotations,werepresentkinematicequationsasavectorfunctionrelatingptoq:113,),(nxxqpqfp?=(4.1.6)Foraseriallinkmechanism,allthejointsareu

15、suallyactivejointsdrivenbyindividualactuators.Exceptforsomespecialcases,theseactuatorsuniquelydeterminetheend-effecterpositionandorientationaswellastheconfigurationoftheentirerobotmechanism.Ifthereisalinkwhoselocationisnotfullydeterminedbytheactuatordisplacements,sucharobotmechanismissaidtobeunder-a

16、ctuated.Unlessarobotmechanismisunder-actuated,thecollectionofthejointdisplacements,i.e.thevectorq,uniquelydeterminestheentirerobotconfiguration.Foraseriallinkmechanism,thesejointsareindependent,havingnogeometricconstraintotherthantheirstrokelimits.Therefore,thesejointdisplacementsaregeneralizedcoord

17、inatesthatlocatetherobotmechanismuniquelyandcompletely.Formally,thenumberofgeneralizedcoordinatesiscalleddegreesoffreedom.Vectorqiscalledjointcoordinates,whentheyformacompleteandindependentsetofgeneralizedcoordinates.4.2InverseKinematicsofPlanarMechanismsThevectorkinematicequationderivedinthepreviou

18、ssectionprovidesthefunctionalrelationshipbetweenthejointdisplacementsandtheresultantend-effecterpositionandorientation.Bysubstitutingvaluesofjointdisplacementsintotheright-handsideofthekinematicequation,onecanimmediatelyfindthecorrespondingend-effecterpositionandorientation.Theproblemoffindingtheend

19、-effecterpositionandorientationforagivensetofjointdisplacementsisreferredtoasthedirectkinematicsproblem.Thisissimplytoevaluatetheright-handsideofthekinematicequationforknownjointdisplacements.Inthissection,wediscusstheproblemofmovingtheend-effecterofamanipulatorarmtoaspecifiedpositionandorientation.

20、Weneedtofindthejointdisplacementsthatleadtheend-effectertothespecifiedpositionandorientation.Thisistheinverseofthepreviousproblem,andisthusreferredtoastheinversekinematicsproblem.Thekinematicequationmustbesolvedforjointdisplacements,giventheend-effecterpositionandorientation.Oncethekinematicequation

21、issolved,thedesiredend-effectermotioncanbeachievedbymovingeachjointtothedeterminedvalue.Inthedirectkinematicsproblem,theend-effecterlocationisdetermineduniquelyforanygivensetofjointdisplacements.Ontheotherhand,theinversekinematicsismorecomplexinthesensethatmultiplesolutionsmayexistforthesameend-effe

22、cterlocation.Also,solutionsmaynotalwaysexistforaparticularrangeofend-effecterlocationsandarmstructures.Furthermore,sincethekinematicequationiscomprisedofnonlinearsimultaneousequationswithmanytrigonometricfunctions,itisnotalwayspossibletoderiveaclosed-formsolution,whichistheexplicitinversefunctionoft

23、hekinematicequation.Whenthekinematicequationcannotbesolvedanalytically,numericalmethodsareusedinordertoderivethedesiredjointdisplacements.Example4.2ConsiderthethreedofplanararmshowninFigure4.1.1again.Tosolveitsinversekinematicsproblem,thekinematicstructureisredrawninFigure4.2.1.Theproblemistofindthr

24、eejointangles321,thatleadtheendeffectertoadesiredpositionandorientation,eeeyx,.Wetakeatwo-stepapproach.First,wefindthepositionofthewrist,pointB,fromeeeyx,.Thenwefind21,fromthewristposition.Angle3canbedeterminedimmediatelyfromthewristposition.Figure4.2.1SkeletonstructureoftherobotarmofExample4.1Letwa

25、ndwbethecoordinatesofthewrist.AsshowninFigure4.2.1,pointBisatdistance3fromthegivenend-effecterpositionE.MovingintheoppositedirectiontotheendeffecterorientationxyAe,thewristcoordinatesaregivenbyeeweewyyxxsincos33AA?=?=(4.2.1)Notethattherighthandsidesoftheaboveequationsarefunctionsofeeeyx,alone.Fromth

26、esewristcoordinates,wecandeterminetheangleshowninthefigure.1wwxy1tan?=(4.2.2)Next,letusconsiderthetriangleOABanddefineangles,asshowninthefigure.ThistriangleisformedbythewristB,theelbowA,andtheshoulderO.Applyingthelawofcosinestotheelbowangleyields2212221cos2r=?+AAAA(4.2.3)where,thesquareddistancebetw

27、eenOandB.Solvingthisforangle222wwyxr+=yields21222221122cosAAAAwwyx?+?=?=?(4.2.4)Similarly,221212cos2AAA=?+rr(4.2.5)Solvingthisforyields2212221221112costanwwwwwwyxyxxy+?+?=?=?AAA(4.2.6)Fromtheabove21,wecanobtain213?=e(4.2.7)Eqs.(4),(6),and(7)provideasetofjointanglesthatlocatestheend-effecteratthedesi

28、redpositionandorientation.Itisinterestingtonotethatthereisanotherwayofreachingthesameend-effecterpositionandorientation,i.e.anothersolutiontotheinversekinematicsproblem.Figure4.2.2showstwoconfigurationsofthearmleadingtothesameend-effecterlocation:theelbowdownconfigurationandtheelbowupconfiguration.T

29、heformercorrespondstothesolutionobtainedabove.Thelatter,havingtheelbowpositionatpointA,issymmetrictotheformerconfigurationwithrespecttolineOB,asshowninthefigure.Therefore,thetwosolutionsarerelatedas222232132211?+=?=?=+=e(4.2.8)Inversekinematicsproblemsoftenpossessmultiplesolutions,liketheaboveexampl

30、e,sincetheyarenonlinear.Specifyingend-effecterpositionandorientationdoesnotuniquelydeterminethewholeconfigurationofthesystem.Thisimpliesthatvectorp,thecollectivepositionandorientationoftheend-effecter,cannotbeusedasgeneralizedcoordinates.Theexistenceofmultiplesolutions,however,providestherobotwithan

31、extradegreeofflexibility.Considerarobotworkinginacrowdedenvironment.Ifmultipleconfigurationsexistforthesameend-effecterlocation,therobotcantakeaconfigurationhavingnointerferencewith1Unlessnotedspecificallyweassumethatthearctangentfunctiontakesanangleinaproperquadrantconsistentwiththesignsofthetwoope

32、rands.theenvironment.Duetophysicallimitations,however,thesolutionstotheinversekinematicsproblemdonotnecessarilyprovidefeasibleconfigurations.Wemustcheckwhethereachsolutionsatisfiestheconstraintofmovablerange,i.e.strokelimitofeachjoint.11Elbow-UpConfigurationFigure4.2.2Multiplesolutionstotheinverseki

33、nematicsproblemofExample4.24.3KinematicsofParallelLinkMechanismsExample4.3Considerthefive-bar-linkplanarrobotarmshowninFigure4.3.1.22112211sinsincoscosAAAA+=+=eeyx(4.3.1)NotethatJoint2isapassivejoint.Hence,angle2isadependentvariable.Using2,however,wecanobtainthecoordinatesofpointA:25112511sinsincosc

34、osAAAA+=+=AAyx(4.3.2)PointAmustbereachedviathebranchcomprisingLinks3and4.Therefore,44334433sinsincoscosAAAA+=+=AAyx (4.3.3)Equatingthesetwosetsofequationsyieldstwoconstraintequations:4433251144332511sinsinsinsincoscoscoscosAAAAAAAA+=+=+(4.3.4)Notethattherearefourvariablesandtwoconstraintequations.Th

35、erefore,twoofthevariables,suchas31,areindependent.Itshouldalsobenotedthatmultiplesolutionsexistfortheseconstraintequations.xLink0Figure4.3.1Five-bar-linkmechanismAlthoughtheforwardkinematicequationsaredifficulttowriteoutexplicitly,theinversekinematicequationscanbeobtainedforthisparallellinkmechanism

36、.Theproblemistofind31,thatleadtheendpointtoadesiredposition:.Wewilltakethefollowingprocedure:eeyx,Step1Given,findeeyx,21,bysolvingthetwo-linkinversekinematicsproblem.Step2Given21,obtain.Thisisaforwardkinematicsproblem.AAyx,Step3Given,findAAyx,43,bysolvinganothertwo-linkinversekinematicsproblem.Examp

37、le4.4Obtainthejointanglesofthedogslegs,giventhebodypositionandorientation.Figure4.3.2AdoggyrobotwithtwolegsonthegroundTheinversekinematicsproblem:Step1GivenBBByx,findandAAyx,CCyx,Step2Given,findAAyx,21,Step3Given,findCCyx,43,4.4RedundantmechanismsAmanipulatorarmmusthaveatleastsixdegreesoffreedominor

38、dertolocateitsend-effecteratanarbitrarypointwithanarbitraryorientationinspace.Manipulatorarmswithlessthan6degreesoffreedomarenotabletoperformsucharbitrarypositioning.Ontheotherhand,ifamanipulatorarmhasmorethan6degreesoffreedom,thereexistaninfinitenumberofsolutionstothekinematicequation.Considerforex

39、amplethehumanarm,whichhassevendegreesoffreedom,excludingthejointsatthefingers.Evenifthehandisfixedonatable,onecanchangetheelbowpositioncontinuouslywithoutchangingthehandlocation.Thisimpliesthatthereexistaninfinitesetofjointdisplacementsthatleadthehandtothesamelocation.Manipulatorarmswithmorethansixdegreesoffreedomarereferredtoasredundantmanipulators.Wewilldiscussredundantmanipulatorsindetailinthefollowingchapter.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 培训材料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁