2022秋九年级数学上册第四章图形的相似复习学案1无答案新版北师大版.doc

上传人:知****量 文档编号:18889832 上传时间:2022-06-02 格式:DOC 页数:11 大小:184KB
返回 下载 相关 举报
2022秋九年级数学上册第四章图形的相似复习学案1无答案新版北师大版.doc_第1页
第1页 / 共11页
2022秋九年级数学上册第四章图形的相似复习学案1无答案新版北师大版.doc_第2页
第2页 / 共11页
点击查看更多>>
资源描述

《2022秋九年级数学上册第四章图形的相似复习学案1无答案新版北师大版.doc》由会员分享,可在线阅读,更多相关《2022秋九年级数学上册第四章图形的相似复习学案1无答案新版北师大版.doc(11页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、第四章 图形的相似 学习目标与 考点分析学习目标:1、熟练理解运用线段的比AB:CD=m:n以及黄金分割 2、明确理解相似三角形和相似多边形的性质 3、熟练运用相似多边形边角关系考点分析:1、相似比的性质和黄金分割 2、相似多边形的性质和判定定理学习重点重点:1、线段比例和黄金分割 2、相似三角形的性质 3、相似三角形的额判定定理学习方法讲练结合 练习稳固 学习内容与过程【知识点梳理】一. 线段的比1. 如果选用同一个长度单位量得两条线段AB, CD的长度分别是m、n,那么就说这两条线段的比AB:CD=m:n ,或写成 .2. 四条线段a、b、c、d中,如果a与b的比等于c与d的比,即 ,那么

2、这四条线段a、b、c、d叫做成比例线段,简称比例线段.3. 注意点:a:b=k,说明a是b的k倍;由于线段 a、b的长度都是正数,所以k是正数;比与所选线段的长度单位无关,求出时两条线段的长度单位要一致;除了a=b之外,a:bb:a, 与 互为倒数;比例的根本性质:假设 , 那么ad=bc; 假设ad=bc, 那么 二. 黄金分割1. 如图1,点C把线段AB分成两条线段AC和BC,如果 ,那么称线段AB被点C黄金分割,点C叫做线段AB的黄金分割点,AC与AB的比叫做黄金比. 2.黄金分割点是最优美、最令人赏心悦目的点.四. 相似多边形1. 一般地,形状相同的图形称为相似图形.2. 对应角相等、

3、对应边成比例的两个多边形叫做相似多边形.相似多边形对应边的比叫做相似比.五. 相似三角形1. 在相似多边形中,最为简简单的就是相似三角形.2. 对应角相等、对应边成比例的三角形叫做相似三角形.相似三角形对应边的比叫做相似比.3. 全等三角形是相似三角的特例,这时相似比等于1. 注意:证两个相似三角形,与证两个全等三角形一样,应把表示对应顶点的字母写在对应的位置上.4. 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比.5. 相似三角形周长的比等于相似比. 6. 相似三角形面积的比等于相似比的平方.六.探索三角形相似的条件1. 相似三角形的判定方法:一般三角形 直角三角形根本定理

4、:平行于三角形的一边且和其他两边(或两边的延长线)相交的直线,所截得的三角形与原三角形相似.两角对应相等;两边对应成比例,且夹角相等;三边对应成比例. 一个锐角对应相等;两条边对应成比例:a. 两直角边对应成比例;b. 斜边和一直角边对应成比例.2. 平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例. 如图2, l1 / l2 / l3,那么 .3. 平行于三角形一边的直线与其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似.八. 相似的多边形的性质相似多边形的周长比等于相似比;面积比等于相似比的平方.九. 图形的位似1. 如果两个图形不仅是相似图形,而且每组对应点

5、所在的直线都经过同一点,那么这样的两个图形叫做位似图形; 这个点叫做位似中心; 这时的相似比又称为位似比.2. 位似图形上任意一对对应点到位似中心的距离之比等于位似比.3. 位似变换:变换后的图形,不仅与原图相似,而且对应顶点的连线相交于一点,并且对应点到这一交点的距离成比例.像这种特殊的相似变换叫做位似变换.这个交点叫做位似中心.一个图形经过位似变换后得到另一个图形,这两个图形就叫做位似形.利用位似的方法,可以把一个图形放大或缩小.【例题讲解】一线段的比1.两条线段的比的概念:两条线段的比就是两条线段长度的比注:同一长度单位的两条线段AB、CD的长度分别为m、n,那么这两条线段的比AB:例:

6、线段a的长度为3厘米,线段b的长度为6米,所以两线段a,b的比为36=12,对吗?不对,因为a、b的长度单位不一致,.注意在量线段时要选用同一个长度单位. 解: 解:设x=2k,y=3k,z=4k 2比例尺=图上距离实际距离. 例1. :A、B两地的实际距离是80千米,在某地图上测得这两地之间的距离为1cm,那么该地图的比例尺为_。现量得该地图上太原到北京的距离为6.4cm,那么两地的实际距离为_用科学记数法表示。相距50千米的C、D两地在该地图上的距离为_。 解: 答案:1:8000000;5.12102km;0.625cm3 如果选用同一个长度单位量得两条线段AB,CD的长度分别是m,n,

7、那么就说这两条线段的比AB:CD=m:n,或写成或a:b=c:d,那么,这四条线段叫做成比例线段,简称比例线段例1:a、b、c、d是成比例线段,其中a=3cm,b=2cm,c=6cm,求线段d的长。 4比例的根本性质:如果,那么ad=bc 五. 合比性质、等比性质: . 解: 2令AD=4k,DB=k,AE=4n,EC=n 二.黄金分割如图:点C把线段AB分成两条线段AC和AB,如果=那么称线段AB被点C黄金分割,点C叫做线段AB的黄金分割点,AC与AB的比叫做黄金比。1把长为8cm的线段进行黄金分割,较长线段的长是_。 解: 2AC可能是较大线段也可能是较小线段 选D 三相似多边形 1. 对

8、应角相等,对应边成比例的两个多边形叫做相似多边形,相似多边形对应边的比叫做相似比。 2. 相似多边形的周长比等于相似比,面积比等于相似比的平方,对应线段比等于相似比。 例10. 2两个相似三角形对应边上的高的比为4:9,它们的周长比为_,面积比为_。 3两个相似多边形地块的相似比为3:4,面积差为28m2,那么它们的面积分别为_。 解:1面积比等于相似比的平方,相似比=1:3 24:9;16:81 3面积比为9:16,设两个相似地块分别为9x,16x 四相似三角形1相似三角形,就是形状相同,但大小不一样。定义:三角对应相等,三边对应成比例的两个三角形叫做相似三角形。所有的边数相同的正多边形都相

9、似正三角形,正方形,正五边形等等2相似三角形的判定方法有1两角对应相等,两三角形相似。 2两边对应成比例且夹角相等,两三角形相似。 3三边对应成比例,两三角形相似。3相似三角形的性质:1. 相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等的比等于相似比相似三角形的对应边的比,叫做相似比。2.相似三角形周长的比等于相似比。3.相似三角形面积的比等于相似比的平方。例11. G、H分别在AC、AB上,BC=15cm,BC边上的高AD=10cm,求正方形的面积。 解: 2设正方形边长为x 一、如何证明三角形相似例1、如图:点G在平行四边形ABCD的边DC的延长线上,A

10、G交BC、BD于点E、F,那么AGD 。 二、如何应用相似三角形证明比例式和乘积式例1、ABC中,在AC上截取AD,在CB延长线上截取BE,使AD=BE,求证:DFAC=BCFE例2:如图,在ABC中,BAC=900,M是BC的中点,DMBC于点E,交BA的延长线于点D。求证:1MA2=MDME;2 三、如何用相似三角形证明两角相等、两线平行和线段相等。例1:如图E、F分别是正方形ABCD的边AB和AD上的点,且。求证:AEF=FBD 课内练习与训练一. 填空题 1. _,=_。 2. 上午8时,某地一根长1m的标尺直立地面,其影长为1.4m,同时测得一建筑物影长为43.4m,那么该建筑物高度

11、为_m。,点P、_,=_,=_。 4. 如图,在中,DE/BC,=_,如果BC=16,那么DE=_。 5. 如图,CD是的斜边AB上的高,假设AC=4cm,AD=2cm,那么AB=_cm。 6. 一个三角形三边之比为4:5:6,另一个和它相似的三角形的最短边长为6cm,那么其余两边之和为_cm。 二. 选择题 7. 如果线段a=4,b=16,c=8,那么a,b,c的第四比例项d为 A. 8B. 16C. 24D. 32 8. 以下命题:1如果相似,一定可以写成;2有一个锐角对应相等的两直角三角形一定相似;3两个相似三角形的面积比为1:9,那么它们的周长比为1:3;4两个位似图形一定相似,其中错

12、误的命题的序号是 A. 1B. 2C. 3D. 4 9. 如图,某铁道口平安栏杆的短臂长1m,长臂长15m,当短臂端点下降0.5m时,长臂端点升高 A. 30mB. 7.5mC. 14.5mD. 15.5m 10. 如果点C是线段AB的黄金分割点,AC=2cm,那么AB的长为 A. 4cmB. C. D. 三. 解答题 11. :点O和如图, 1以点O为位似中心,画的位似图形,使与在点O同一侧,且它们的位似比为3:1; 2以点O为位似中心,画的位似图形,使在点O的两侧,且它们的位似比为3:1; 3考察有什么位置关系。 12. 如图,在中,DE/BC,EF/AB,假设,求。 学生收获你这次课一定有不少收获吧,请写下来: 教学反思本次课后作业

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 工作计划

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁