两级CMOS运算放大器的设计与spectrum仿真.doc

上传人:知****量 文档编号:18880971 上传时间:2022-06-02 格式:DOC 页数:19 大小:1.13MB
返回 下载 相关 举报
两级CMOS运算放大器的设计与spectrum仿真.doc_第1页
第1页 / 共19页
两级CMOS运算放大器的设计与spectrum仿真.doc_第2页
第2页 / 共19页
点击查看更多>>
资源描述

《两级CMOS运算放大器的设计与spectrum仿真.doc》由会员分享,可在线阅读,更多相关《两级CMOS运算放大器的设计与spectrum仿真.doc(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、.LAB2 两级CMOS运算放大器的设计 图 1两级CMOS运算放大器一:基本目标:参照CMOS模拟集成电路设计第二版p223.例6.3-1设计一个CMOS两级放大器,满足以下指标: 相位裕度:为什么要使用两级放大器,两级放大器的优点:单级放大器输出对管产生的小信号电流直接流过输出阻抗,因此单级电路增益被抑制在输出对管的跨导与输出阻抗的乘积。在单级放大器中,增益是与输出摆幅是相矛盾的。要想得到大的增益我们可以采用共源共栅结构来极大地提高输出阻抗的值,但是共源共栅结构中堆叠的MOS管不可避免地减少了输出电压的范围。因为多一层管子就要至少多增加一个管子的过驱动电压。这样在共源共栅结构的增益与输出电

2、压范围相矛盾。为了缓解这种矛盾引进了两级运放,在两极运放中将这两点各在不同级实现。如本文讨论的两级运放,大的增益靠第一级与第二级相级联而组成,而大的输出电压范围靠第二级这个共源放大器来获得。典型的无缓冲CMOS运算放大器特性边界条件要求工艺规范见表2、3电源电压电源电流100a工作温度范围070特性要求增益增益带宽5MHz建立时间摆率ICMRCMRR60dBPSRR60dB输出摆幅输出电阻无,仅用于容性负载失调噪声100(1kHz时)版图面积5000表1 典型的无缓冲CMOS运算放大器特性二:两级放大电路的电路分析:图1中有多个电流镜结构,M5,M8组成电流镜,流过M1的电流与流过M2电流,同

3、时M3,M4组成电流镜结构,如果M3和M4管对称,那么相同的结构使得在x,y两点的电压在Vin的共模输入范围内不随着Vin的变化而变化,为第二极放大器提供了恒定的电压和电流。图1所示,Cc为引入的米勒补偿电容。表2 0.5工艺库提供的模型参数 CSMC 0.5um Double Poly Mix CMOS process model工艺参数NMOS0.70161.28E-8404.257PMOS-0.95081.24E-8219.5单位表3 一些常用的物理常数常数符号常数描述值单位室温下自由空间介电常数二氧化硅的介电常数利用表2、表3中的参数计算得到第一级差分放大器的电压增益为: (1)第二极

4、共源放大器的电压增益为 (2)所以二级放大器的总的电压增益为 (3) 相位裕量有要求60的相位裕量,假设RHP零点高于10GB以上所以 即 由于要求的相位裕量,所以可得到=2.2pF因此由补偿电容最小值2.2pF,为了获得足够的相位裕量我们可以选定Cc=3pF考虑共模输入范围:在最大输入情况下,考虑M1处在饱和区,有 (4)在最小输入情况下,考虑M5处在饱和区,有 (5)而电路的一些基本指标有 (6)GB是单位增益带宽P1是3DB带宽GB= (7) (8) (9)CMR: 正的CMR (10) 负的CMR (12)由电路的压摆率得到=(3*10-12)()10*106)=30A(为了一定的裕度

5、,我们取。)则可以得到,下面用ICMR的要求计算(W/L)311/1所以有=11/1由,GB=5MHz,我们可以得到即可以得到 用负ICMR公式计算由式(12)我们可以得到下式如果的值小于100mv,可能要求相当大的,如果小于0,则ICMR的设计要求则可能太过苛刻,因此,我们可以减小或者增大来解决这个问题,我们为了留一定的余度我们等于-1.1V为下限值进行计算则可以得到的进而推出即有为了得到60的相位裕量,的值近似起码是输入级跨导的10倍(allen书p.211例6.2-1),我们设,为了达到第一级电流镜负载(M3和M4)的正确镜像,要求,图中x,y点电位相同我们可以得到进而由我们可以得到直流

6、电流同样由电流镜原理,我们可以得到三:指标的仿真和测量电路基本元件的spice网表.libc:synopsysh05mixddst02v231.lib ttm1 x vin vn vss mn w=2u l=1um2 y vin vn vss mn w=2u l=1um3 x x vdd vdd mp w=11u l=1um4 y x vdd vdd mp w=11u l=1um5 vn 3 vss vss mn w=11u l=1um6 vout y vdd vdd mp w=64u l=1um7 vout 3 vss vss mn w=32u l=1um8 3 3 vss vss mn w

7、=11u l=1uIref vdd 3 40uVdd vdd 0 dc 2.5 Vss vss 0 dc -2.5Vin vin 0 dc 0.end1、DC分析图2 VOUT、M5管电流、M7管电流、Vx与Vy与输入共模电压变化的关系1.1 Vssvin Vth+VssM3,M4工作在饱和区。而由于此时电流不是很大,导致不是很大,这样导致Vx的电压还是比较高,所以M1,M2工作在饱和区。M5由于这个时候的电流不很大,仍然工作在线性区。即这时M1,M2,M3,M4都工作在饱和区,M5工作在线性区. M6会随着Vx电压的下降而导通。而刚开始导通时,Vout的比较小(这是由于M7管此时仍然处于线性

8、区,较小),比较大而使得M6管工作在饱和区。随着Vin的进一步的增大,M5的电流增大,M5的漏极电压也随着增大,最后一直到M1,M2,M3,M4,M5都工作在了饱和区。而此时Vy的电压变得恒定了。2、测量输入共模范围运算放大器常采用如图3所示的单位增益结构来仿真运放的输入共模电压范围,即把运放的输出端和反相输入端相连,同相输入端加直流扫描电压,从负电源扫描到正电源。得到的仿真结果如图3所示(利用MOS管的GD极性相反来判断放大器的同相端与反相端)图3 测量共模输入范围的原理图图4 测量共模输入范围的电路图 图5 运放的输入共模电压范围从图中可以得到输入共模范围满足设计指标(-1V2V)3、测量

9、输出电压范围在单位增益结构中,传输曲线的线性收到ICMR限制。若采用高增益结构,传输曲线的线性部分与放大器输出电压摆幅一致,图6为反相增益为10的结构,通过RL的电流会对输出电压摆幅产生很大的影响,要注意对其的选取,这里我们选取RL=50K,R=60K.图8为输出电压范围图6 测量输出电压范围的原理图图7 测量输出电压范围的电路图图8 输出电压的范围可以看出输出电压摆率大概在-2V2V之间,基本满足要求4、测量增益与相位裕度相位裕度是电路设计中的一个非常重要的指标,用于衡量负反馈系统的稳定性,并能用来预测闭环系统阶跃响应的过冲,定义为:运放增益的相位在增益交点频率时(增益幅值等1的频率点为增益

10、交点),与-180相位的差值。图9 测量增益与相位裕度的原理图(a)(b)图10 运放的交流小信号分析从图中看出,相位裕度63,增益66dB,增益指标未达到,单位增益带宽仅有4GB左右5、电路存在的问题与解决1、共模输入范围的下限可以进一步提高。这时我们观察计算过程发现它主要由M5管来确定。为了能够使范围下限更小,我们加大M5管宽长比,以降低M5管的饱和电压 ,这样M7和M8的宽长比也要按比例往上调。当(W/L=50/1)可以实现指标。此时、 。这样输入共模范围指标就提高了。2、并不足够大,需要加大M6管的宽长比来实现。以保证能够尽可能的大于,从而实现良好的相位裕度。可以通过加大M7管来加大电

11、流以达到增加的目的。当然,也可以增加M6管的宽长比来实现。同时单位增益带宽过低,可以通过提高来实现提高GB值,但是注意给带来的负面影响。3、增益不够大,只有66dB多点。关于这一点,根据表达式,我们有几种解决的方案:一种是可以加大M1和M6管来加大宽长比,以加大和;另一种,可以加大M1、M4、M6、M7中的管子的沟道长度(宽和长同比例增加),来增加各级的输出电阻。但是同比例增加M4管宽和长要注意第三极点的位置(在x点处存在镜像极点),宽和长的同比例增加会使得镜像极点位置减小,这是因为管子的面积增大使得寄生电容加大。另外,我们还可以减小M7管宽长比,以减小来提高增益。需要解决的问题,我们需要加大

12、M6的宽长比(对以上三个方面都有正向作用),但是仅仅加大M6的宽长比,对于增益方面还不够,还需要加大M1宽长比,使得增加,使得GB值的问题也得到解决。综合以上问题的分析,我们加大M6的宽长比(1,2,3),加大M7管宽长比(3),同比例加大M1、M2、M3、M4、M6管的宽和长(3),最终我们得到:表4 运放中功率管的计算值与仿真值MOS管W/L(计算值)W/L(仿真值)M1、M2M3、M4M5、M8M6M76、修改电路后的AC分析在共模输入电压分别为-1V和+2V以及0V的条件下做交流小信号分析,得到低频小信号开环电压增益的幅频与相频特性曲线,如图11图13图11 dc=0V时的小信号仿真,

13、增益为80.91 dB图12 dc=2V时的小信号仿真,增益为73.12 dB图11 dc= -1V时的小信号仿真,增益为73.21dB表5 三种共模输入电压下的运放小信号分析共模电压0V2V-1V低频增益80.9173.12 dB73.21 dBGB5.44 MHz5.681 MHz5.681 MHz相位裕度59.8258.4458.457、电源电压抑制比测试因为在实际使用中的电源也含有纹波,在运算放大器的输出中引入很大的噪声,为了有效抑制电源噪声对输出信号的影响,需要了解电源上的噪声是如何体现在运算放大器的输出端的。把从运放输入到输出的差模增益除以差模输入为0时电源纹波到输出的增益定义为运

14、算放大器的电源抑制比,式中的vdd=0,vin=0指电压源和输入电压的交流小信号为0,而不是指它们的直流电平。需要注意的是,电路仿真时,认为MOS管都是完全一致的,没有考虑制造时MOS管的失配情况,因此仿真得到的PSRR都要比实际测量时好,因此在设计时要留有余量。 (13) 图12 电源抑制比的原理图 图13 正负PSRR的测试结果我们可以计算出低频下正电源抑制比(PSRR+)为83.24dB,负电源抑制比为(PSRR-)为83.24dB。8、运放转换速率和建立时间分析转换速率是指输出端电压变化的极限,它由所能提供的对电容充放电的最大电流决定。一般来说,摆率不受输出级限制,而是由第一级的源/漏

15、电流容量决定。建立时间是运算放大器受到小信号激励时输出达到稳定值(在预定的容差范围内)所需的时间。较长的建立时间意味着模拟信号处理速率将降低。为了测量转换速率和建立时间,将运算放大器输出端与反相输入端相连,如图14所示,输出端接10pF电容,同相输入端加高、低电平分别为+2.5V和-2.5V,周期为10s无时间延迟的方波脉冲。因为单位增益结构的反馈最大,从而导致最大的环路增益,所以能用做最坏情况测量,因此采用这种结构来测量转换速率和建立时间。得到的仿真图如16。由图16可以看出,建立时间约为0.5s,在图中波形的上升或下降期间,由波形的斜率可以确定摆率。经计算得,上升沿的转换速率SR+为11.

16、6 V/us,下降沿的转换速率SR-为10.5 V/us。图14 摆率和建立时间的测量方法图15 测量摆率和建立时间的电路图图16 摆率与建立时间9、CMRR的频率响应测量差动放大器的一个重要特性就是其对共模扰动影响的抑制能力,实际上,运算放大器既不能是完全对称的,电流源的输出阻抗也不可能是无穷大的,因此共模输入的变化会引起电压的变化,,是指共模输出端和共模输入端的交流小信号,而不是它们的直流偏置电压。绘制电路图时,无法体现由于制造产生的不对称性,因此采用保留余量的方法。注意,同相反相端加入相同的小信号电压Vcm。, (14)图17 测试CMRR的原理图图17 放大器的CMRR的频率响应曲线从

17、图中可以从得到电路的共模抑制比为81.5dB。在100KHz以下CMRR是相当大的。可以看出,PSRR在高频处开始退化,这也是两级无缓冲运算放大器的缺点。四、总结本次课程主要讲解了一个简单二级运放设计流程,参照了ALLEN书上的例子和仿真方法。主要目的是通过对基本运放模块的仿真分析,提高大家分析电路和使用工具软件的能力。还有一些分析优化工作没有做,在上面的电路补偿方面我们利用的是米勒补偿。通过对它相频曲线的仿真发现, 3db带宽很小仅有500Hz左右。补偿电阻的引入,可以使得主极点更加接近原点。为了拓宽3db带宽。应该使用调零补偿。希望大家课后将调零补偿再做一下。附表6 设计指标与仿真结果特性(电源电压)设计仿真结果开环增益()500080.91dBSR()10范围(V)-22-22.1(mW)21.38ICMR-1V2V-1.12.3Phase6064(dB)83.24(dB)83.24CMRR(dB)81.5.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 工作计划

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁