2022版高考数学一轮复习核心素养测评十八导数的存在性问题理北师大版.doc

上传人:知****量 文档编号:18766935 上传时间:2022-06-02 格式:DOC 页数:9 大小:1.62MB
返回 下载 相关 举报
2022版高考数学一轮复习核心素养测评十八导数的存在性问题理北师大版.doc_第1页
第1页 / 共9页
2022版高考数学一轮复习核心素养测评十八导数的存在性问题理北师大版.doc_第2页
第2页 / 共9页
点击查看更多>>
资源描述

《2022版高考数学一轮复习核心素养测评十八导数的存在性问题理北师大版.doc》由会员分享,可在线阅读,更多相关《2022版高考数学一轮复习核心素养测评十八导数的存在性问题理北师大版.doc(9页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、核心素养测评十八 导数的存在性问题(30分钟60分)一、选择题(每题5分,共20分)1.假设存在正实数x使ex(x2-a)1成立,那么实数a的取值范围是()A.(-1,+)B.(0,+)C.(-2,+)D.-1,+)【解析】选A.存在正实数x使ex(x2-a)x2-在区间(0,+)上有解,令f(x)=x2-,f(x)=2x+0,所以f(x)在区间(0,+)上单调递增,所以f(x)f(0)=-1,又ax2-在区间(0,+)上有解,所以a(-1,+).2.(2022莆田模拟)假设函数f(x)=x3-x2+2x没有极小值点,那么a的取值范围是()A.B.C.0D.0【解析】选C.f(x)=ax2-2

2、x+2,要使得f(x)没有极小值,那么要求f(x)恒大于等于0,或者恒小于等于0,或者该导函数为一次函数,当该导函数为一次函数的时候,a=0,满足条件,当f(x)恒大于等于0的时候,那么,解得a,当f(x)恒小于等于0的时候,那么,此时a不存在,故a0.3.函数f(x)=e2x,g(x)=ln x+,对aR,b(0,+),f(a)=g(b),那么b-a的最小值为()A.-1B.1-C.2-1D.1+【解析】选D.设f(a)=g(b)=t,t(0,+),可得a=,b=,令h(t)=b-a=-,t(0,+),那么 h(t)=-,令h(t)=0,得t=,由于h(t)=-是增函数,所以t时,h(t)0

3、,因此h(t)在上单调递减,在上单调递增,从而h(t)的最小值为h=1+.4.(2022重庆模拟)假设函数f(x)=ex在(0,1)内存在极值点,那么实数a的取值范围是()A.(-,0)B.(0,+)C.(-,-1 D.-1,0)【解析】选A.函数f(x)=ex,定义域为x|x0,f(x)=ex+xex-=,因为f(x)在(0,1)内存在极值点,那么f(x)=0的实数根在(0,1)内,即x3+x2-ax+a=0的实数根在区间(0,1)内,令g(x)=x3+x2-ax+a,可知,函数g(x)=x3+x2-ax+a在(0,1)内存在零点,讨论a:a=0时,g(x)=x2(x+1)在(0,1)上无零

4、点.a0时,在(0,1)上,g(x)=x3+x2+(1-x)a0,无零点.a0时,g(0)=a0,在(0,1)上有零点.所以实数a的取值范围是a0时,令f(x)=0,得x=ln,函数f(x)在上单调递减,在上单调递增,所以f(x)的最小值为f=1-ln-2a=1+ln a-2a.令g(a)=1+ln a-2a(a0),那么g(a)=-2.当a时,g(a)单调递增;当a时,g(a)单调递减,所以g(a)max=g=-ln 20,所以f(x)的最小值为f0,得x2;F(x)0,得0x2,所以F(x)在1,2上递减,在2,3上递增,F(1)=3,F(2)=3-ln 2,F(3)=-ln 3.作出函数

5、F(x)图像,如图.作直线y=m,平移可知当3-ln 20,所以f(x)在上单调递增,因为a,b,所以f(x)在a,b上单调递增,因为f(x)在a,b上的值域为k(a+2),k(b+2),所以,所以方程f(x)=k(x+2)在上有两解a,b.作出y=f(x)与直线y=k(x+2)的函数图像,那么两图像有两交点.假设直线y=k(x+2)过点,那么k=,假设直线y=k(x+2)与y=f(x)的图像相切,设切点为(x0, y0),那么,解得k=1.所以10,解得:x2,令f(x)0,解得:x2,所以f(x)在上单调递减,在(2,3上单调递增, 所以f=8.5是函数的最大值, 当x22,3时,g(x)

6、=2x+a为增函数, 所以g(3)=a+8是函数的最大值, 又因为x1,x22,3,使得f(x1)g(x2), 可得f(x)在x1的最大值不小于g(x)在x22,3的最大值, 即8.5a+8,解得:a.答案:a三、解答题(每题10分,共20分)9.(2022黄冈模拟)函数f(x)=ex(a+ln x),其中aR.(1)假设曲线y=f(x)在x=1处的切线与直线y=-垂直,求a的值.(2)记f(x)的导函数为g(x).当a(0,ln 2)时,证明:g(x)存在极小值点x0,且f(x0)0,所以g(x)与a+-+ln x同号.设h(x)=a+-+ln x,那么h(x)=.所以对任意x(0,+),有

7、h(x)0,故h(x)在(0,+)上单调递增.因为a(0,ln 2),所以h(1)=a+10,h=a+ln 0,故存在x0,使得h(x0)=0.g(x)与g(x)在区间上的情况如下:xx0(x0,1)g(x)-0+g(x)极小值所以g(x)在区间上单调递减,在区间(x0,1)上单调递增.所以假设a(0,ln 2),存在x0,使得x0是g(x)的极小值点.令h(x0)=0,得到a+ln x0=,所以f(x0)=(a+ln x0)=0,令f(x)=0,得x=,所以当x(0,)时,有f(x)0,那么(,+)是函数f(x)的单调递增区间.当x(1,e)时,函数f(x)在(1,)上单调递减,在(,e)上

8、单调递增;又因为f(1)=,f(e)=e2-30,f()=(1-ln 3)0,bR).(1)假设存在正数a,使f(x)0恒成立,求实数b的最大值.(2)设a=1,假设g(x)=xex-2x-f(x)没有零点,求实数b的取值范围.【解析】(1)因为f(x)=ln x-ax+ab,所以f(x)=-a=-,所以y=f(x)在上单调递增,在上单调递减.所以f(x)max=f=-ln a-1+ab.所以存在正数a,使ab1+ln a成立,即存在正数a,使得b成立.令h(x)=,x(0,+),因为h(x)=-,所以y=h(x)在(0,1)上单调递增,在(1,+)上单调递减.所以h(x)max=h(1)=1

9、,所以b1.故b的最大值为1.(2)因为a=1,所以f(x)=ln x-x+b.所以g(x)=xex-x-ln x-b.所以g(x)=(x+1).令x0(0,1),使得=.两边取自然对数,得x0=-ln x0,所以g(x)在(0,x0)上单调递减,在(x0,+)上单调递增.由题设可知,要使函数g(x) 没有零点,那么要g(x)min=g(x0)0即可,g(x0)=x0-x0+x0-b=1-b0,所以b0恒成立,又由g(x)=2e2x-aex-a2=,假设a=0,那么g(x)=e2x0,g(x)无零点,f(x)无好点.假设a0,由g(x)=0,得x=ln a.当x(-,ln a)时,g(x)0,所以g(x)在(-,ln a)上单调递减,在上单调递增.所以当x=ln a时,g(x)取最小值g(ln a)=-a2ln a.当且仅当-a2ln a0,即0a0,所以g(x)无零点,f(x)无好点.假设a0,由g(x)=0,得x=ln.当x时,g(x)0,所以g(x)在上单调递减,在上单调递增.所以当x=ln时,g(x)取最小值g=a2.当且仅当a20,即-2a0,所以g(x)无零点,f(x)无好点.综上,a的取值范围为.- 9 -

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 管理文献 > 商业计划书

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁