《椭圆的简单几何性质第一课时课件--高二下学期数学人教A版选修2-1.pptx》由会员分享,可在线阅读,更多相关《椭圆的简单几何性质第一课时课件--高二下学期数学人教A版选修2-1.pptx(13页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2.2 椭圆2.2.2 椭圆的简单几何性质(1) 椭圆的定义、标准方程是什么椭圆的定义、标准方程是什么? 如何如何画出椭圆的画出椭圆的图形?图形?问题:如何将一个长、宽分别为10,的矩形纸板制作成一个最大的椭圆呢?方程中变量x , y的取值范围椭圆的范围22221(0)xyabab以焦点在x轴上的椭圆为例 axa bybF2F1yOx-aba-b形形数数坐标轴是椭圆的对称轴原点是椭圆的对称中心椭圆的对称中心叫做椭圆的中心思考:思考:椭圆的对称轴一定是坐标轴吗?-aF2F1byOxa-b关于关于y轴对称轴对称P1(-x,y)P3(-x,-y)P(x,y)P2(x,-y)椭圆的对称性关于关于x轴对
2、称轴对称关于原点对称关于原点对称22221(0)xyabab方程形式上的对称性形形数数椭圆顶点坐标为:椭圆顶点坐标为:1.椭圆与它的对称轴的四个交点椭圆与它的对称轴的四个交点椭圆的椭圆的顶点顶点.回顾:A1(a,0),A2(a,0),B1(0,b),B2(0,b).焦点坐标焦点坐标(c,0) oxyA2(a, 0)A1(-a, 0)B2(0,b)B1(0,-b)以焦点在X X轴上的为例:22221(0)xyabab长轴:线段长轴:线段A1A2;长轴长长轴长 |A1A2|=2a.短轴:线段短轴:线段B1B2;短轴长短轴长 |B1B2|=2b.焦焦 距距 |F1F2|=2c.a-a-长半轴长长半轴
3、长 b- b-短半轴长短半轴长 c- c-半焦距半焦距焦点必在长轴上;焦点必在长轴上;a2=b2+c2, oxyB2(0,b)B1(0,-b)A2(a, 0)A1(-a, 0)bacF2F1|B2F2|=a;2.线段线段A1A2, B1B2分别叫做分别叫做椭圆的长轴和短轴椭圆的长轴和短轴。注意:叫做特征三角形22FOBRt练习练习1.根据根据前面所学有关知识在同一坐标系中画出下前面所学有关知识在同一坐标系中画出下列图形列图形.141622yx191622yx(1)(2)A1 B1 A2 B2 123-1-2-3-44y1 2 345-1-5-2-3-4xO问题:椭圆有些比较“扁”,有些比较“圆
4、”,用什么刻画椭圆“扁”的程度呢?141622yx191622yx123-1-2-3-44y1 2 345-1-5-2-3-4xA1 B1 A2 B2 Oa保持不变时, b就越小,此时椭圆就越扁就越小,此时椭圆就越扁b就越大,此时椭圆就越圆就越大,此时椭圆就越圆ab可以刻画椭圆的扁平程度可以刻画椭圆的扁平程度.因为ac0,当且仅当当且仅当a a=b=b时,时,c=0c=0,这时两个焦点重合,图形变为圆,这时两个焦点重合,图形变为圆所以0 e 1.椭圆的焦距与长轴长的比 叫做椭圆的离心率,用e离心率越大,椭圆越扁离心率越大,椭圆越扁离心率越小,椭圆越圆离心率越小,椭圆越圆ce.a表示,即ca总之
5、:离心率cea且0 e 1离心率-aF2F1byOxa-b标准方程图形范围对称性顶点坐标半轴长离心率22221(0)xyabab22221(0)yxabab关于x轴,y轴,原点对称(a,0),(0, b)-axa,-byb-aF2F1byOxa-bA1A2B1B2长半轴长为a,短半轴长为bF2F1OyxB2B1A1A2例1、求椭圆16x2+25y2=400的长轴和短轴的长、离心率、焦点和顶点的坐标解:把已知方程化成标准方程,1452222yx于是. 31625, 4, 5cba椭圆的长轴长和短轴长分别是210,28,ab四个顶点坐标分别为两个焦点坐标分别为离心率,53ace12( 3,0)(3,0)FF,1212( 5,0),(5,0),(0, 4),(0,4).AABB椭圆的几何性质标准方程椭圆代数方法建系方程的代数特征图形观察形形数数谢谢观赏!