《282解直角三角形应用举例(3).ppt》由会员分享,可在线阅读,更多相关《282解直角三角形应用举例(3).ppt(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、新人教版九年级数学新人教版九年级数学( (下册下册) )第二十八章第二十八章 28.2 28.2 解直角三角形(解直角三角形(3 3)铅铅垂垂线线水平线水平线视线视线视线视线仰角仰角俯角俯角在进行观察或测量时,在进行观察或测量时, 仰角和俯角仰角和俯角从上往下看,视线与水平线的夹角叫做从上往下看,视线与水平线的夹角叫做俯角俯角.从下向上看,视线与水平线的夹角叫做从下向上看,视线与水平线的夹角叫做仰角仰角;v指南或指北的方向线与目标方向线构成小于指南或指北的方向线与目标方向线构成小于900的角的角,叫做方位角叫做方位角.v如图:点如图:点A在在O的北偏东的北偏东30v点点B在点在点O的南偏西的南
2、偏西45(西南方向)(西南方向)3045BOA东东西西北北南南方位角方位角利用利用解直角三角形解直角三角形的知识的知识解决实际问题解决实际问题的一般过程是的一般过程是:1.将实际问题抽象为数学问题将实际问题抽象为数学问题;(画出平面图形画出平面图形,转化为解直角三角形的问题转化为解直角三角形的问题)2.根据条件的特点根据条件的特点,适当选用锐角三角函数等去解直角三角形适当选用锐角三角函数等去解直角三角形;3.得到数学问题的答案得到数学问题的答案;4.得到实际问题的答案得到实际问题的答案.例例5. 如图,一艘海轮位于灯塔如图,一艘海轮位于灯塔P的北偏东的北偏东60方向,距方向,距离灯塔离灯塔80
3、海里的海里的A处,它沿正南方向航行一段时间后,处,它沿正南方向航行一段时间后,到达位于灯塔到达位于灯塔P的南偏东的南偏东30方向上的方向上的B处,这时,海处,这时,海轮所在的轮所在的B处距离灯塔处距离灯塔P有多远?有多远? (精确到(精确到0.01海里)海里)6030PBCA例例6.海中有一个小岛海中有一个小岛A,它的周围,它的周围8海里范围内有暗礁,海里范围内有暗礁,渔船跟踪鱼群由西向东航行,在渔船跟踪鱼群由西向东航行,在B点测得小岛点测得小岛A在北偏在北偏东东60方向上,航行方向上,航行12海里到达海里到达D点,这时测得小岛点,这时测得小岛A在北偏东在北偏东30方向上,如果渔船不改变航线继
4、续向东方向上,如果渔船不改变航线继续向东航行,有没有触礁的危险?航行,有没有触礁的危险?BA ADF601230BADF解:由点解:由点A作作BD的垂线的垂线交交BD的延长线于点的延长线于点F,垂足为,垂足为F,AFD=90由题意图示可知由题意图示可知DAF=30设设DF= x , AD=2x则在则在RtADF中,根据勾股定理中,根据勾股定理222223AFADDFxxx在在RtABF中,中,tanAFABFBF3tan3012xx解得解得x=666 310.4AFx10.4 8没有触礁危险没有触礁危险30601.如图所示,轮船以如图所示,轮船以32海里每小时的速海里每小时的速度向正北方向航行
5、,在度向正北方向航行,在A处看灯塔处看灯塔Q在轮在轮船的北偏东船的北偏东30 处,半小时航行到处,半小时航行到B处,处,发现此时灯塔发现此时灯塔Q与轮船的距离最短,求与轮船的距离最短,求灯塔灯塔Q到到B处的距离(画出图像后再计算)处的距离(画出图像后再计算)ABQ30相信你能行相信你能行A2 2如图所示,一渔船上的渔民在如图所示,一渔船上的渔民在A A处看见灯处看见灯塔塔M M在北偏东在北偏东6060方向,这艘渔船以方向,这艘渔船以2828海里海里/ /时的速度向正东航行,半小时至时的速度向正东航行,半小时至B B处,在处,在B B处处看见灯塔看见灯塔M M在北偏东在北偏东1515方向,此时灯
6、塔方向,此时灯塔M M与与渔船的距离是渔船的距离是( ) ( ) A.A. 海里海里 B.B. . 海里海里C.7C.7海里海里 D.14D.14海里海里 27214D 气象台发布的卫星云图显示,代号为气象台发布的卫星云图显示,代号为W的台风的台风在某海岛(设为点在某海岛(设为点O)的南偏东)的南偏东45方向的方向的B点点生成,测得生成,测得 台风中心从点台风中心从点B以以40km/h的速度向正北方向移动,经的速度向正北方向移动,经5h后到达海后到达海面上的点面上的点C处因受气旋影响,台风中心从点处因受气旋影响,台风中心从点C开始以开始以30km/h的速度向北偏西的速度向北偏西60方向继续移方
7、向继续移动以动以O为原点建立如图为原点建立如图12所示的直角坐标系所示的直角坐标系100 6kmOBx/kmy/km北东AOBC图12v(1)台风中心生成点)台风中心生成点B的坐标为的坐标为 ,台风,台风中心转折点中心转折点C的坐标为的坐标为 ;(结果保留根号);(结果保留根号)v(2)已知距台风中心)已知距台风中心20km的范围内均会受到台的范围内均会受到台风的侵袭如果某城市(设为风的侵袭如果某城市(设为A点)位于点点)位于点O的的正北方向且处于台风中心的移动路线上,那么台正北方向且处于台风中心的移动路线上,那么台风从生成到最初侵袭该城要经过多长时间?风从生成到最初侵袭该城要经过多长时间?x
8、/kmy/km北东AOBC图12解:(1) (100 3 100 3)B,(100 3 200 100 3)C,(2)过点)过点C作作 于点于点D,如图,如图2,则,则 CDOA100 3CD在在 中中 RtACD30ACD1003CD 3cos302CDCA2 0 0C A200206305611台风从生成到最初侵袭该城要经过台风从生成到最初侵袭该城要经过11小时小时60 x/kmy/kmAOBC图图2D修路、挖河、开渠和筑坝时,设计图纸上都要修路、挖河、开渠和筑坝时,设计图纸上都要注明斜坡的倾斜程度注明斜坡的倾斜程度. 坡面的铅垂高度(坡面的铅垂高度(h)和水平长度()和水平长度(l)的比
9、)的比叫做坡面叫做坡面(或(或). 记作记作i , 即即 i = .坡度坡度通常写成通常写成1 m的形式,如的形式,如 i=1 6.坡面与坡面与 水平面的夹角叫做水平面的夹角叫做坡角坡角,记作,记作a,有,有. 显然,坡度越大,坡角显然,坡度越大,坡角a就越大,坡面就越陡就越大,坡面就越陡. lhlh例例7. 如图,拦水坝的横断面为梯形如图,拦水坝的横断面为梯形ABCD(图中(图中i=1:3是指坡面的铅直是指坡面的铅直高度高度DE与水平宽度与水平宽度CE的比),根据图中数据求:的比),根据图中数据求:(1)坡角)坡角a和和;(2)坝顶宽)坝顶宽AD和斜坡和斜坡AB的长(精确到的长(精确到0.1
10、m)BADFEC6mi=1:3i=1:1.5解解:(:(1)在)在RtAFB中,中,AFB=90tan11.5AFiBF :33.7 在在RtCDE中,中,CED=90tan1:3DEiCE 18.4图 19.4.6 19.4.6 如图一段路基的横断面是梯形,高为如图一段路基的横断面是梯形,高为4.2米,上底的宽是米,上底的宽是12.51米,路基的坡面与地面米,路基的坡面与地面的倾角分别是的倾角分别是32和和28求路基下底的求路基下底的宽(精确到宽(精确到0.1米)米)想一想1. 认清图形中的有关线段认清图形中的有关线段;2. 分析辅助线的作法分析辅助线的作法;3. 坡角在解题中的作用坡角在解
11、题中的作用;4. 探索解题过程探索解题过程.32tan2 . 4AEAEDEi)(72. 632tan2 . 4米AE作作DEAB,CFAB,垂足分别为,垂足分别为E、 F由题意可知由题意可知 DECF4.2(米),(米),CDEF12.51(米)(米). .在在RtADE中,因为中,因为 所以所以 )(90. 728tan2 . 4米BF在在RtBCF中,同理可得中,同理可得 因此因此 ABAEEFBF 6.7212.517.90 27.13(米)(米) 答:答: 路基下底的宽约为路基下底的宽约为27.13米米图19.4.6 1.在解直角三角形及应用时经常接触到在解直角三角形及应用时经常接触
12、到的一些概念的一些概念(仰角、俯角仰角、俯角;方位角方位角;坡度、坡度、坡角坡角等等) 2.实际问题实际问题向向数学模型数学模型的转化的转化 (解直角三角形解直角三角形)利用解直角三角形的知识解决实际问题的一般过程是:利用解直角三角形的知识解决实际问题的一般过程是:(1)将实际问题抽象为数学问题(画出平面图形,转化为解直角)将实际问题抽象为数学问题(画出平面图形,转化为解直角三角形的问题);三角形的问题);(2)根据条件的特点,适当选用锐角三角形函数等去解直角三角)根据条件的特点,适当选用锐角三角形函数等去解直角三角形;形;(3)得到数学问题的答案;)得到数学问题的答案;(4)得到实际问题的答案)得到实际问题的答案习题28.2 4、5、7、8、9、10