《新人教版八年级数学上册总复习课件.ppt》由会员分享,可在线阅读,更多相关《新人教版八年级数学上册总复习课件.ppt(92页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、新人教版八年级上册新人教版八年级上册期末总复习期末总复习第十一章全第十一章全等三角形(复习)等三角形(复习)一一.全等三角形全等三角形:1 1:什么是全等三角形?一个三角形经过哪些变:什么是全等三角形?一个三角形经过哪些变化可以得到它的全等形?化可以得到它的全等形?2 2:全等三角形有哪些性质?:全等三角形有哪些性质?能够完全重合的两个三角形叫做全等三角形。一个三角能够完全重合的两个三角形叫做全等三角形。一个三角形经过平移、翻折、旋转可以得到它的全等形。形经过平移、翻折、旋转可以得到它的全等形。(1 1):全等三角形的对应边相等、对应角相等。):全等三角形的对应边相等、对应角相等。(2 2):
2、全等三角形的周长相等、面积相等。):全等三角形的周长相等、面积相等。(3 3):全等三角形的对应边上的对应中线、角平分):全等三角形的对应边上的对应中线、角平分线、高线分别相等。线、高线分别相等。知识回顾:知识回顾:一般三角形一般三角形 全等的条件全等的条件:1.1.定义(重合)法;定义(重合)法;2.SSS2.SSS;3.SAS3.SAS;4.ASA4.ASA;5.AAS.5.AAS.直角三角形直角三角形 全等全等特有特有的条件:的条件:HL.HL.包括直角三角形包括直角三角形不包括其它形不包括其它形状的三角形状的三角形解题解题中常中常用的用的4 4种种方法方法回顾知识点:回顾知识点:边边边
3、:边边边:三边对应相等的两个三角形全等(可简写成三边对应相等的两个三角形全等(可简写成“SSS”SSS”) )边角边边角边: :两边两边和和它们的夹角对应相等两个三角形全等它们的夹角对应相等两个三角形全等(可简写成(可简写成“SAS”)SAS”)角边角角边角: :两角和它们的夹边对应相等的两个三角形全等两角和它们的夹边对应相等的两个三角形全等(可简写成(可简写成“ASA”)ASA”)角角边角角边: :两角和其中一角的对边对应相等的两个三角形两角和其中一角的对边对应相等的两个三角形全等(可简写成全等(可简写成“AAS”)AAS”)斜边斜边. .直角边:直角边:斜边和一条直角边对应相等的两个直角斜
4、边和一条直角边对应相等的两个直角三角形全等(可简写成三角形全等(可简写成“HL”)HL”)方法指引证明两个三角形全等的基本思路:证明两个三角形全等的基本思路:(1 1)已知两边)已知两边- 找第三边找第三边 (SSS)找夹角找夹角(SAS)(2)(2)已知一边一角已知一边一角-已知一边和它的邻角已知一边和它的邻角找是否有直角找是否有直角 (HL)已知一边和它的对角已知一边和它的对角找这边的另一个邻角找这边的另一个邻角(ASA)找这个角的另一个边找这个角的另一个边(SAS)找这边的对角找这边的对角 (AAS)找一角找一角(AAS)已知角是直角,找一边已知角是直角,找一边(HL)(3)(3)已知两
5、角已知两角-找两角的夹边找两角的夹边(ASA)找夹边外的任意边找夹边外的任意边(AAS)角的内部到角的两边的距离相等的点角的内部到角的两边的距离相等的点在角的平分线上。在角的平分线上。 QDOA,QEOB,QDQE点Q在AOB的平分线上角的平分线上的点到角的两边的距离相等角的平分线上的点到角的两边的距离相等. QDOA,QEOB,点Q在AOB的平分线上 QDQE二二.角的平分线:角的平分线:1.角平分线的性质:角平分线的性质:2.角平分线的判定:角平分线的判定:总结提高总结提高学习全等三角形应注意以下几个问题:学习全等三角形应注意以下几个问题:(1)1)要正确区分要正确区分“对应边对应边”与与
6、“对边对边”,“对应角对应角”与与 “ “对角对角”的不同含义;的不同含义;(2 2)表示两个三角形全等时,表示对应顶点的字)表示两个三角形全等时,表示对应顶点的字母要写在对应的位置上;母要写在对应的位置上;(3 3)要记住)要记住“有三个角对应相等有三个角对应相等”或或“有两边及其有两边及其中一边的对角对应相等中一边的对角对应相等”的两个三角形不一定全等;的两个三角形不一定全等;(4 4)时刻注意图形中的隐含条件,如)时刻注意图形中的隐含条件,如 “ “公共角公共角” ” 、“公共边公共边”、“对顶角对顶角”练习练习1:如图,:如图,AB=AD,CB=CD. 求证求证: AC 平分平分BAD
7、ADCB证明:在证明:在ABC和和ADC中中 AC=AC AB=AD CB=CD ABC ADC (SSS) BAC= DAC AC平分平分BAD2、如图,、如图,D在在AB上,上,E在在AC上,上,AB=AC ,B=C, 试问试问AD=AE吗?吗?为什么?为什么?EDCBA解解: AD=AE理由:理由: 在在ACD和和ABE中中 B=C AB=AC A=A ACD ABE (ASA) AD=AE3、如图,、如图,OBAB,OCAC,垂足为垂足为B,C,OB=OCAO平分平分BAC吗?为什么?吗?为什么?OCBA答:答: AO平分平分BAC理由:理由: OBAB,OCAC B=C=90 在在R
8、tABO和和RtACO中中 OB=OC AO=AO RtABO RtACO (HL) BAO=CAO AO平分平分BAC 4、如图,、如图,AC和和BD相交于点相交于点O,OA=OC,OB=OD 求证:求证:DCAB证明:在证明:在ABO和和CDO中中 OA=OC AOB= COD OB=OD ABO CDO (SAS) A= C DCABAODBC练习练习5: 如图,小明不慎将一块三角形模具打碎为如图,小明不慎将一块三角形模具打碎为两块,他是否可以只带其中的一块碎片到商店去,两块,他是否可以只带其中的一块碎片到商店去,就能配一块与原来一样的三角形模具呢?如果可以,就能配一块与原来一样的三角形
9、模具呢?如果可以,带那块去合适?为什么?带那块去合适?为什么?BAFEDCBA6、如图,已知、如图,已知ACEF,DEBA,若使若使ABC EDF,还需要补还需要补充的条件可以是充的条件可以是 或或或或或或AB=EDAC=EFBC=DFDC=BF7:已知:已知 AC=DB, 1=2. 求证求证: A=D21DCBA证明:在ABC和DCB中 AC=DB 1=2 BC=CB ABC DCB (SAS) A=D 8、如图,已知,如图,已知,ABDE,AB=DE,AF=DC。请问图中有那几对全等三角形?请任选一对请问图中有那几对全等三角形?请任选一对给予证明。给予证明。FEDCBAABF DECCBF
10、 FECABC DEF答:答:9、如图,已知、如图,已知E在在AB上,上,1=2, 3=4,那么,那么AC等于等于AD吗?为什么?吗?为什么?4321EDCBA解:解:AC=AD理由:在理由:在EBC和和EBD中中 1=2 3=4 EB=EB EBC EBD (AAS) BC=BD 在在ABC和和ABD中中 AB=AB 1=2 BC=BD ABC ABD (SAS) AC=AD10、已知,、已知,ABC和和ECD都是等边三角形,且点都是等边三角形,且点B,C,D在一在一条直线上求证:条直线上求证:BE=AD EDCAB变式:变式:以上条件不变,将以上条件不变,将ABC绕点绕点C旋转一定角度旋转
11、一定角度(大于零度而小于六十度),(大于零度而小于六十度),以上的结论还成立吗?以上的结论还成立吗?证明证明: ABC和和ECD都是等边三角形都是等边三角形 AC=BC DC=EC BCA=DCE=60 BCA+ACE=DCE+ ACE即即BCE=DCA在在ACD和和BCE中中 AC=BC BCE=DCA DC=EC ACD BCE (SAS) BE=AD9、如图,已知、如图,已知E在在AB上,上,1=2, 3=4,那么,那么AC等于等于AD吗?为什么?吗?为什么?4321EDCBA解:解:AC=AD理由:在理由:在EBC和和EBD中中 1=2 3=4 EB=EB EBC EBD (AAS)
12、BC=BD 在在ABC和和ABD中中 AB=AB 1=2 BC=BD ABC ABD (SAS) AC=AD10、已知,、已知,ABC和和ECD都是等边三角形,且点都是等边三角形,且点B,C,D在一在一条直线上求证:条直线上求证:BE=AD EDCAB变式:变式:以上条件不变,将以上条件不变,将ABC绕点绕点C旋转一定角度旋转一定角度(大于零度而小于六十度),(大于零度而小于六十度),以上的结论还成立吗?以上的结论还成立吗?证明证明: ABC和和ECD都是等边三角形都是等边三角形 AC=BC DC=EC BCA=DCE=60 BCA+ACE=DCE+ ACE即即BCE=DCA在在ACD和和BC
13、E中中 AC=BC BCE=DCA DC=EC ACD BCE (SAS) BE=AD分析:分析:由于两个三角形完全重合,故面积、周长由于两个三角形完全重合,故面积、周长相等。至于相等。至于D,因为,因为AD和和BC是对应边,因此是对应边,因此ADBC。C符合题意。符合题意。说明:本题的解题关键是要知道中两个全等三角形说明:本题的解题关键是要知道中两个全等三角形中,对应顶点定在对应的位置上,易错点是容易找中,对应顶点定在对应的位置上,易错点是容易找错对应角错对应角 。例题精析:例题精析:连接例题例例2如图如图2,AECF,ADBC,ADCB,求证:求证:ADF CBE 分析:分析:已知已知AB
14、C A1B1C1 ,相当于已,相当于已知它们的对应边相等知它们的对应边相等.在证明过程中,可根据需在证明过程中,可根据需要,选取其中一部分相等关系要,选取其中一部分相等关系.例例3已知:如图已知:如图3,ABC A1B1C1,AD、A1D1分别是分别是ABC和和A1B1C1的高的高.求证:求证:AD=A1D1图图3例例4:求证:有一条直角边和斜边上的高:求证:有一条直角边和斜边上的高对应相等的两个直角三角形全等。对应相等的两个直角三角形全等。分析:分析:首先要分清首先要分清题设题设和和结论结论,然后按要求,然后按要求画出图形画出图形,根据题意写出根据题意写出已知求证已知求证后,再写出证明过程。
15、后,再写出证明过程。说明:说明:文字证明题文字证明题的的书写格式要标准书写格式要标准。如图:将纸片ABC沿DE折叠,点A落在点F处, 已知1+2=100,则A= 度;例例5、如图、如图6,已知:,已知:A90, AB=BD,EDBC于于 D.求证:求证:AEED 提示:提示:找两个全等三角形,需连结找两个全等三角形,需连结BE.图图6例6、如图:AB=AC,BD=CD,若B=28则C= ;5、如图、如图5,已知:,已知:AB=CD,AD=CB,O为为AC任一点,过任一点,过O作直线作直线分别交分别交AB、CD的延长线于的延长线于F、E,求,求证:证:E=F.提示:提示:由条件易证由条件易证AB
16、C CDA 从而得知从而得知BACDCA ,即:,即:ABCD.第第十三章十三章 轴对称轴对称 把一个图形沿着一条直线折把一个图形沿着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。这条直线就是它的图形就叫做轴对称图形。这条直线就是它的对称轴对称轴。这时我们也说这个图形关于这条直线(成轴)对称。 把一个图形沿着某一条直线折叠,把一个图形沿着某一条直线折叠,如果它能与另一个图形完全重合,那么就说这两个如果它能与另一个图形完全重合,那么就说这两个图关于这条直线对称。这条直线叫做图关于这条直线对称。这条直线叫做对称轴对称轴。折叠
17、后重合的点是对应点,叫做_对称点对称点_.一一.轴对称图形轴对称图形1、轴对称图形:、轴对称图形:2、轴对称:、轴对称:3 3、轴对称图形和轴对称的区别与联系轴对称图形和轴对称的区别与联系 轴对称图形轴对称图形轴对称轴对称 区别区别联系联系图形图形 (1)(1)轴对称图形是指轴对称图形是指( )( ) 具具 有特殊形状的图形有特殊形状的图形, , 只对只对( )( ) 图形而言图形而言; ;(2)(2)对称轴对称轴( )( ) 只有一条只有一条(1)(1)轴对称是指轴对称是指( )( )图形图形 的位置关系的位置关系, ,必须涉及必须涉及 ( )( )图形图形; ;(2)(2)只有只有( )(
18、 )对称轴对称轴. .如果把轴对称图形沿对称轴如果把轴对称图形沿对称轴 分成两部分分成两部分, ,那么这两个图形那么这两个图形 就关于这条直线成轴对称就关于这条直线成轴对称. .如果把两个成轴对称的图形如果把两个成轴对称的图形 拼在一起看成一个整体拼在一起看成一个整体, ,那那么它就是一个轴对称图形么它就是一个轴对称图形. . B C A C B A A B C一个一个一个一个不一定不一定两个两个两个两个一条一条知识回顾:4、轴对称的性质: 关于某直线对称的两个图形是全等形。关于某直线对称的两个图形是全等形。 如果两个图形关于某条直线对称,那么对如果两个图形关于某条直线对称,那么对称轴是称轴是
19、 任何一对对应点所连线段的垂直平任何一对对应点所连线段的垂直平分线。分线。 轴对称图形的对称轴,是任何一对对应点轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。所连线段的垂直平分线。 如果两个图形的对应点连线被同条直线垂如果两个图形的对应点连线被同条直线垂直平分,那么这两个图形关于这条直线对称。直平分,那么这两个图形关于这条直线对称。CDOBPANM解:PAONONPA 与 关于对称为的中垂线( )DA=DP( )CB=CP同理可有:PCDPC+PD+CDPCDBC+AD+CDABAB15cmPCD周长周长又周长为15cmPPAONBOMABMON已知: 为内一点。 与 关于对称,
20、P与 关于对称。若长为15cm求:PCD的周长.3.1 1、什么叫线段垂直平分线?、什么叫线段垂直平分线? 经过线段中点并且垂直于这条线段的直线,经过线段中点并且垂直于这条线段的直线,叫做这条线段的叫做这条线段的垂直平分线垂直平分线,也叫也叫中垂线。中垂线。2 2、线段垂直平分线有什么性质?、线段垂直平分线有什么性质? 线段垂直平分线上的点线段垂直平分线上的点与这条线段的与这条线段的两个端点的距离相等两个端点的距离相等 (纯粹性)。你能画图说明吗?二二.线段的垂直平分线线段的垂直平分线3.逆定理:与一条线段两个端点距离相等的点,在线段的垂直平分线上。(完备性)4.线段垂直平分线的集合定义: 线
21、段垂直平分线可以看作是线段垂直平分线可以看作是与线段两个端点距离相等与线段两个端点距离相等的所的所有点的集合。有点的集合。mABCFDE三三.用坐标表示轴对称小结:用坐标表示轴对称小结: 在平面直角坐标系中,关于在平面直角坐标系中,关于x轴对称轴对称的点的点横坐标相等横坐标相等,纵坐标互为相反数纵坐标互为相反数.关关于于y轴对称的点轴对称的点横坐标互为相反数横坐标互为相反数,纵坐纵坐标相等标相等.点(点(x, y)关于关于x轴对称的点的坐标为轴对称的点的坐标为_.点(点(x, y)关于关于y轴对称的点轴对称的点的坐标为的坐标为_.(x, y)( x, y)1、完成下表、完成下表.已知点(2,-
22、3)(-1,2)(-6,-5) (0,-1.6)(4,0)关于x轴的对称点关于y轴的对称点(-2, -3)(2, 3)(-1,-2)(1, 2)(6, -5)(-6, 5)(0, -1.6)(0,1.6)(-4,0)(4,0)2、已知点、已知点P(2a+b,-3a)与点与点P(8,b+2).若点若点p与点与点p关于关于x轴对称,则轴对称,则a=_ b=_.若点若点p与点与点p关于关于y轴对称,则轴对称,则a=_ b=_.练 习246-20(抢答抢答) 思考思考:如图:如图,分别作出点分别作出点P,M,N关于直线关于直线x=1的对称点的对称点, 你能发现它们坐标之间分别你能发现它们坐标之间分别有
23、什么关系吗有什么关系吗?31425-2 -1 012345-4-3-2-1x=1P(-2,4)M(-1,1)N(5,-2)N(-3,-2)M(3,1)P(4,4)x y 点(点(x, y)关于直线)关于直线x=1对称的点的坐标为(对称的点的坐标为(2-x, y)类似: 若两点(x1,y1)、(x2,y2)关于直线y=n对称,则 ; 归纳:若两点(x1,y1)、(x2,y2)关于 直线x=m对称,则;221xx 221yy y1=y2x1=x2X2=2m-x1y2=2n-y1(m= )(n= )4.利用轴对称变换作图:如图:要在燃气管道L上修建一个泵站,分别向A、B两镇供气,泵站修在管道什么地方
24、,可使所用的输气管道线最短?ABLP三三.(等腰三角形(等腰三角形)知识点回顾知识点回顾1.1.等腰三角形的等腰三角形的性质性质. .等腰三角形的两个底角相等。(等腰三角形的两个底角相等。(等边对等角等边对等角). .等腰三角形的顶角平分线、底边上的中线、等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。(底边上的高互相重合。(三线合一三线合一)2 2、等腰三角形的判定:、等腰三角形的判定: 如果一个三角形有两个角相等,那么如果一个三角形有两个角相等,那么这两个角所对的边也相等。(这两个角所对的边也相等。(等角对等边等角对等边)四四.(等边三角形(等边三角形)知识点回顾知识点回顾1.1
25、.等边三角形的等边三角形的性质:性质: 等边三角形的三个角都相等,并且每一个角都等边三角形的三个角都相等,并且每一个角都等于等于60600 0 。2 2、等边三角形的判定:、等边三角形的判定: 三个角都相等的三角形是等边三角形。三个角都相等的三角形是等边三角形。 有一个角是有一个角是60600 0的等腰三角形是等边三角形。的等腰三角形是等边三角形。3.3.在直角三角形中,如果一个锐角等于在直角三角形中,如果一个锐角等于30300 0,那么它那么它所对的直角边等于斜边的一半。所对的直角边等于斜边的一半。 1、如图,在、如图,在ABC中,中,AB=AC时,时,(1)ADBC _= _;_=_(2)
26、 AD是中线是中线_; _= _(3) AD是角平分线是角平分线_ _;_=_BACDBADCADBDCDADBCBADCADADBCBDCD练习:练习:例 1:如图 1,AD 是ABC 的角平分线,BEAD 交 AD 的延长线于 E,EFAC 交 AB 于 F,求证:AFFB.图 1BEAE,BEFFEA90,ABEBAD90.ABEFEB,BFEF,AFFB.证明:AE 平分BAC,BADCAD,EFAC,CADAEF.BADAEF,AFEF.求证:BC AB.例 2:试证明:在直角三角形中,如果一个锐角等于 30,那么它所对的直角边等于斜边的一半已知:在ABC 中,C90,A30.如图
27、2.图 212证明:如图 3,作出ABC 关于 AC 对称的ABC.则 ABAB.CAB30,BBBAB60.ABBBAB.图 3又ACBB,1如图 4,AD 是ABC 的边 BC 上的高,由下列条件中的某一个就能推出ABC 是等腰三角形的是_(把所有正确答案的序号都填写在横线上)BADACD;BADCAD;ABBDACCD;ABBDACCD.图 42某等腰三角形的两条边长分别为 3 cm 和 6 cm,则它的周长为()CA9 cmB12 cmC15 cmD12 cm 或 15 cm3等腰三角形的一个角为 30,则底角为_30或 75DBCEAC A.4已知:如图 5,ABAC,BDAC.12
28、图 5方法二:BDAC,DBC90C.ABAC,ABCC.求证:DBC12A. 证明:方法一:作A 的平分线 AE 交 BC 于 E,ABAC,AEBC.CEAC90.BDAC,CDBC90.5如图 6,在ABC 中,ABAC,在 AB 上取一点 E,在AC 延长线上取一点 F,使 BECF,EF 交 BC 于 G,EMCF.求证:EGFG.图 6BEMB,EBEM.又BECF,EMFC.MEG CFG(AAS)EGFG.证明:EMFC,EMBACB,MEGF.又ABAC,BACB.6等腰三角形一腰上的高与另一腰的夹角为 40,求等腰三角形底角的度数65.BACB180A2180502图 7解
29、:当等腰三角形为锐角三角形时,如图 7(1),BACB,ACD40,A50.当等腰三角形为钝角三角形时,如图 7(2),BACB,ACD40,BAC9040130.BACB180130225.底角度数为 65或 25.7如图 8,阴影部分是由 5 个小正方形组成的一个直角图形,请用两种方法分别在下图空白方格内涂黑两个小正方形,使它们成为轴对称图形图 8解:如图9.图 98如图 10,已知四边形 ABCD,你能画出它关于 y 轴对称的图形吗?它的对应顶点的坐标是怎样变化的?图 10解:能;如图 11,四边形 ABCD的四个顶点的坐标分别为 A(0,5),B(2,0),C(4,3),D(2,2),
30、即对应顶点的横坐标互为相反数,纵坐标相等图 11本章知识导引本章知识导引整式整式整式的概念整式的概念单项式单项式多项式多项式系数系数次数次数项项次数次数整式的运算整式的运算整式乘法整式乘法互逆运互逆运算算整式除法整式除法因式分解因式分解概念概念方法方法同类项同类项合并同类项合并同类项整式加减整式加减幂的运算幂的运算单项式乘单项式单项式乘单项式单项式乘多项式单项式乘多项式多项式乘多项式多项式乘多项式乘法公式乘法公式提公因式法提公因式法公式珐公式珐互逆变形互逆变形知识要点知识要点:一、幂的一、幂的4个运算性质个运算性质二、整式的乘、除二、整式的乘、除三、乘法公式三、乘法公式四、因式分解四、因式分解
31、考查知识点:(当考查知识点:(当m,n是正整数时)是正整数时)1、同底数幂的乘法:、同底数幂的乘法:am an = am+n 2、同底数幂的除法:、同底数幂的除法:am an = am-n ; a a0 0=1(a0)=1(a0)3、幂的乘方、幂的乘方: (am )n = amn 4、积的乘方、积的乘方: (ab)n = anbn 解此类题应注意明确法则及各自运算的特点,避免混淆解此类题应注意明确法则及各自运算的特点,避免混淆知识点一知识点一例2 (2008年湖北荆门)计算:(-2x2)3=_本题中积的乘方运算是通过改变运算顺序进行的,即将各个因式的积的乘方转化为各个因式的乘方的积,前者先求积
32、后乘方,后者则先乘方再求积例3 (2008年江苏徐州)计算: (-1)2009+0= 零指数的考查常常与实数的运算结合在一起,是易错点 -8x602.若若10 x=5,10y=4,求求102x+3y-1 的值的值.3.计算:计算:0.251000(-2)2000注意点:注意点:(1)指数:加减)指数:加减乘除乘除转化转化(2)指数:乘法)指数:乘法幂的乘方幂的乘方转化转化(3)底数:不同底数)底数:不同底数同底数同底数转化转化1.(x-3)x+2=1x+2=0,x=-2原式原式=102x103y10=(10 x)2(10y)310 0.5(-2)2000=a0=1(a0)知识点知识点2 2 整
33、式的乘除法整式的乘除法相关知识:单项式乘以单项式,单项式乘以单项式,单项式乘以多项式,单项式乘以多项式,多项式乘以多项式,多项式乘以多项式,单项式除以单项式,单项式除以单项式,多项式除以单项式多项式除以单项式常见题型有填空题、选择题和计算与化简求值等低中档题例(1)(2008年山西)计算: 2x3(-3x)2=_ (2)(2008年福建宁德)计算: 6m3(-3m2)=_. 单项式的乘除法中若有乘方、乘除法等混合运算,应按“先算乘方,再算乘除法”的顺序进行在进行单项式的乘除法运算时,可先确定结果(积或商)的符号,再按法则进行计算18x5-2m计算:计算:(3x+4)(3x-4)-(2x+3)(
34、3x-2)(1-x)(1+x)(1+x2)(1-x4)(x+4y-6z)(x-4y+6z)(x-2y+3z)2平方差公式:平方差公式:(a+b)(a-b)=a2-b2完全平方公式:完全平方公式:(a+b)2=a2+2ab+b2(a-b)2=a2-2ab+b2三数和的平方公式:三数和的平方公式:(a+b+c)2=a2+b2 +c2+2ab+2ac+2bc知识点三知识点三(3x+4)(3x-4)-(2x+3)(3x-2) =9x2-16-(6x2-4x+9x-6) =9x2-16-6x2+4x-9x+6 =3x2-5x-10 =(1-x2)(1+x2)(1+x4) =(1-x4)(1+x4) =1
35、-x8(1-x)(1+x)(1+x2)(1-x4)(x+4y-6z)(x-4y+6z) =x+(4y-6z)x-(4y-6z) =x2-(4y-6z)2=x2-(16y2-48yz+36z2)=x2-16y2+48yz-36z2(x-2y+3z)2 =(x-2y)+3z2=(x-2y)2 +6z(x-2y)+9z2 =x2-4xy+4y2+6zx-12yz+9z2=x2+4y2+9z2-4xy+6zx-12yz三数和的平方公式:三数和的平方公式:(a+b+c)2=a2+b2 +c2+2ab+2ac+2bc计算计算:(1)98102 (2)2992 (3) 20062-20052007 (1)9
36、8102 =(100-2)(100+2) =1002-22 =9996 (2)2992 =(300-1)2=3002-23001+1=90401 (3) 20062-20052007 =20062-(2006-1)(2006+1) =20062-(20062-12) =20062-20062 +1 =1 1 、已知已知a+b=5 ,ab= -2, 求(求(1) a2+b2 (2)a-ba2+b2=(a+b)2-2ab(a-b)2=(a+b)2-4ab2、已知、已知a2-3a+1=0,求(,求(1) (2)221aa 1aa3、已知、已知 求求x2-2x-3的值的值31x 1、因式分解意义:、因
37、式分解意义: 和和积积2、因式分解方法:、因式分解方法:一提一提 二套二套 三看三看二项式:二项式: 套平方差套平方差三项式:三项式: 套完全平方与十相乘法套完全平方与十相乘法看:看: 看是否分解完看是否分解完3、因式分解应用:、因式分解应用:提:提:提公因式提公因式提负号提负号套套知识点四知识点四1.从左到右变形是因式分解正确的是从左到右变形是因式分解正确的是( )A.x2-8=(x+3)(x-3)+1B.(x+2y)2=x2+4xy+4y2C.y2(x-5)-y(5-x)=(x-5)(y2+y)D.)21(21a241-a221-a222a)()(D2.下列各式是完全平方式的有下列各式是完
38、全平方式的有( ) 422 xx412 xx222yxyx2232-91yxyxA A. B.C. D.D1+把下列各式分解因式:把下列各式分解因式:1. x 5 - 16x 2. 4a 2+4ab- b 23. m 2(m- 2) - 4m(2- m) 4. 4a 2- 16(a - 2) 2 (1)提公因式法)提公因式法 (2)套用公式法)套用公式法二项式二项式:平方差平方差三项式三项式:完全平方完全平方1、多项式、多项式x2-4x+4、x2-4的公因式是的公因式是_2、已知、已知x2-2mx+16 是完全平方式,则是完全平方式,则m=_5、如果、如果(2a+2b+1)(2a+2b-1)=
39、63,那么那么a+b=_3、已知、已知x2-8x+m是完全平方式,则是完全平方式,则m=_4、已知、已知x2-8x+m2是完全平方式,则是完全平方式,则m=_x-241644-mx86、如果、如果(a2 +b2 )(a2 +b2 -1)=20,那么那么a2 +b2 =_5-4(不合题意不合题意) 1、计算、计算(-2)2008+(-2)2009 2、计算:、计算:20082009)21()21( 3、计算、计算: 2005+20052-200624、计算、计算: 3992+399观察观察:;181-322请你用正整数请你用正整数n的等式表示你发现的的等式表示你发现的规律规律 .nnn8) 12
40、() 12(22正整数正整数n;283-522;385-722;487-922观察下列各组数观察下列各组数,;1-2312请用字母表示它们的规律请用字母表示它们的规律;1-4532;1-6752;1-897214) 12)(12(2nnnn是正整数是正整数观察下列各组数观察下列各组数,2525143212111211543221936116543请用字母表示它们的规律请用字母表示它们的规律21)2)(1(1) 3)(2)(1(nnnnnnn是正整数是正整数设设 (n为大于为大于0的自然数的自然数).(1) 探究探究an 是否为是否为8的倍数,并用文字语言表述你的倍数,并用文字语言表述你所获得的
41、结论;所获得的结论;(2) 若若一一个数的算术平方根是一个自然数,则称这个数的算术平方根是一个自然数,则称这个数是个数是“完全平方数完全平方数”. 试找出试找出a1 ,a2 ,a n,这一列数中从小到大排列的前这一列数中从小到大排列的前4个完全平方数,个完全平方数,并指出当并指出当n满足什么条件时,满足什么条件时,an 为完全平方数为完全平方数(不不必说明理由必说明理由) .22n222221) 12() 12(a3-5a1-3a nn,两个连续奇数的平方差是两个连续奇数的平方差是8的倍数的倍数前前4个完全平方数为个完全平方数为16、64、144、256n为一个完全平方数的为一个完全平方数的2
42、倍,倍,an是一个完全平方数是一个完全平方数1 1、如图:在、如图:在ABCABC中,中,C =90C =900 0,ADAD平平分分 BACBAC,DEABDEAB交交ABAB于于E E,BC=30BC=30,BDBD:CD=3CD=3:2 2,则,则DE=DE= 。12cABDE全等三角形机动练习:4.4.已知,已知,ABCABC和和ECDECD都是等边三角形,且都是等边三角形,且点点B B,C C,D D在一条直线上求证:在一条直线上求证:BE=ADBE=AD EDCAB变式:变式:以上条件不变,将以上条件不变,将ABC绕点绕点C旋转一定角度旋转一定角度(大于零度而小于六十度),(大于零
43、度而小于六十度),以上的结论海成立吗?以上的结论海成立吗?证明证明: ABC和和ECD都是等边三角形都是等边三角形 AC=BC DC=EC BCA=DCE=60 BCA+ACE=DCE+ ACE即即BCE=DCA在在ACD和和BCE中中 AC=BC BCE=DCA DC=EC ACD BCE (SAS) BE=AD5.5.如图,已知如图,已知E E在在ABAB上,上,1=21=2, 3=43=4,那么那么ACAC等于等于ADAD吗?为什么?吗?为什么?4321EDCBA解:解:AC=AD理由:在理由:在EBC和和EBD中中 1=2 3=4 EB=EB EBC EBD (AAS) BC=BD 在
44、在ABC和和ABD中中 AB=AB 1=2 BC=BD ABC ABD (SAS) AC=AD6.6.如图,已知,如图,已知,ABDEABDE,AB=DEAB=DE,AF=DCAF=DC。请。请问图中有那几对全等三角形?请任选一对给问图中有那几对全等三角形?请任选一对给予证明。予证明。FEDCBA答:答:ABC DEF证明: ABDE A=D AF=DC AF+FC=DC+FC AC=DF在在ABC和和DEF中中 AC=DF A=D AB=DE ABC DEF (SAS)7.7.如图,已知,如图,已知,EGAFEGAF,请你从下面三个条件中,再,请你从下面三个条件中,再选出两个作为已知条件,另
45、一个作为结论,推出一个选出两个作为已知条件,另一个作为结论,推出一个正确的命题。(只写出一种情况)正确的命题。(只写出一种情况)AB=AC AB=AC DE=DF DE=DF BE=CFBE=CF已知:已知: EGAF EGAF 求证:求证:GFEDCBA高高拓展题拓展题9.9.如图如图, ,已知已知ACACBDBD,EAEA、EBEB分别平分分别平分CABCAB和和DBADBA,CDCD过点过点E E,则,则ABAB与与AC+BDAC+BD相等吗?请相等吗?请说明理由。说明理由。ACEBD要证明要证明两条线段的和与一条线段两条线段的和与一条线段相等相等时常用的两种方法:时常用的两种方法:1、
46、可在、可在长线段上截取长线段上截取与与两条线段两条线段中一条相等的一段中一条相等的一段,然后证明剩,然后证明剩余的线段与另一条线段相等。余的线段与另一条线段相等。(割)(割)2、把一个三角形、把一个三角形移到移到另一位置,另一位置,使使两线段补成一条线段两线段补成一条线段,再证明,再证明它与它与长线段相等长线段相等。(补)。(补)11.11.如图,在如图,在R RABCABC中,中,ACB=450ACB=450,BAC=900BAC=900,AB=ACAB=AC,点,点D D是是ABAB的中点,的中点,AFCDAFCD于于H H交交BCBC于于F F,BEACBEAC交交AFAF的延长的延长线
47、于线于E E,求证:,求证:BCBC垂直且平分垂直且平分DE.DE.12.12.已知:如图:在已知:如图:在ABCABC中,中,BEBE、CFCF分分别是别是ACAC、ABAB两边上的高,在两边上的高,在BEBE上截取上截取BD=ACBD=AC,在,在CFCF的延长线上截取的延长线上截取CG=ABCG=AB,连结连结ADAD、AGAG。求证:求证: ADG ADG 为等腰直角三角形。为等腰直角三角形。 G H F E D C B A13.13.已知:如图已知:如图2121,ADBACADBAC,DEABDEAB于于E E,DFACDFAC于于F F,DB=DCDB=DC,求证:求证:EB=FCEB=FC