《2022最新高二上册基本数学知识点总结.doc》由会员分享,可在线阅读,更多相关《2022最新高二上册基本数学知识点总结.doc(3页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2022最新高二上册基本数学知识点总结a|0;a20;(ab)20(a、bR)a2+b22ab(a、bR,当且仅当a=b时取“=”号)2、不等式的证明方法(1)比较法:要证明a>b(a0(ab<0),这种证明不等式的方法叫做比较法。用比较法证明不等式的'步骤是:作差变形判断符号。(2)综合法:从已知条件出发,依据不等式的性质和已证明过的不等式,推导出所要证明的不等式成立,这种证明不等式的方法叫做综合法。(3)分析法:从欲证的不等式出发,逐步分析使这不等式成立的充分条件,直到所需条件已判断为正确时,从而断定原不等式成立,这种证明不等式的方法叫做分析法。证明不等式除以上三种基本
2、方法外,还有反证法、数学归纳法等。高二数学知识点直线、平面、简单几何体:1、学会三视图的分析:2、斜二测画法应注意的地方:(1)在已知图形中取互相垂直的轴Ox、Oy。画直观图时,把它画成对应轴o'x'、o'y'、使x'o'y'=45(或135);(2)平行于x轴的线段长不变,平行于y轴的线段长减半。(3)直观图中的45度原图中就是90度,直观图中的90度原图一定不是90度。3、表(侧)面积与体积公式:柱体:表面积:S=S侧+2S底;侧面积:S侧=;体积:V=S底h锥体:表面积:S=S侧+S底;侧面积:S侧=;体积:V=S底h:台体表面积:
3、S=S侧+S上底S下底侧面积:S侧=球体:表面积:S=;体积:V=4、位置关系的证明(主要方法):注意立体几何证明的书写(1)直线与平面平行:线线平行线面平行;面面平行线面平行。(2)平面与平面平行:线面平行面面平行。(3)垂直问题:线线垂直线面垂直面面垂直。核心是线面垂直:垂直平面内的两条相交直线5、求角:(步骤、找或作角;、求角)异面直线所成角的求法:平移法:平移直线,构造三角形;直线与平面所成的角:直线与射影所成的角高二数学平面向量知识点总结1.基本概念:向量的定义、向量的模、零向量、单位向量、相反向量、共线向量、相等向量。2.加法与减法的代数运算:(1)若a=(x1,y1),b=(x2
4、,y2)则ab=(x1+x2,y1+y2).向量加法与减法的几何表示:平行四边形法则、三角形法则。向量加法有如下规律:+=+(交换律);+(+c)=(+)+c(结合律);3.实数与向量的积:实数与向量的积是一个向量。(1)|=|;(2)当a>0时,与a的方向相同;当a<0时,与a的方向相反;当a=0时,a=0.两个向量共线的充要条件:(1)向量b与非零向量共线的充要条件是有且仅有一个实数,使得b=.(2)若=(),b=()则b.平面向量基本定理:若e1、e2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数,使得=e1+e2.4.P分有向线段所成的比:设P
5、1、P2是直线上两个点,点P是上不同于P1、P2的任意一点,则存在一个实数使=,叫做点P分有向线段所成的比。当点P在线段上时,>0;当点P在线段或的延长线上时,<0;分点坐标公式:若=;的坐标分别为(),(),();则(-1),中点坐标公式:.5.向量的数量积:(1).向量的夹角:已知两个非零向量与b,作=,=b,则AOB=()叫做向量与b的夹角。(2).两个向量的数量积:已知两个非零向量与b,它们的夹角为,则b=|b|cos.其中|b|cos称为向量b在方向上的投影.(3).向量的数量积的性质:若=(),b=()则e=e=|cos(e为单位向量);bb=0(,b为非零向量);|=;cos=.(4).向量的数量积的运算律:b=b;()b=(b)=(b);(+b)c=c+bc.高二上册基本数学知识点第 3 页 共 3 页