《2022最新高考数学知识点归纳2021.doc》由会员分享,可在线阅读,更多相关《2022最新高考数学知识点归纳2021.doc(3页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2022最新高考数学知识点归纳2021学习必须与实干相结合。每一门科目都有自己的学习方法,但其实都是万变不离其中的,数学其实和语文英语一样,也是要记、要背、要练的。下面是小编给大家整理的一些高考数学知识点的学习资料,希望对大家有所帮助。高三高考数学知识点整理(1)不等关系感受在现实世界和日常生活中存在着大量的不等关系,了解不等式(组)的实际背景。(2)一元二次不等式经历从实际情境中抽象出一元二次不等式模型的过程。通过函数图象了解一元二次不等式与相应函数、方程的联系。会解一元二次不等式,对给定的一元二次不等式,尝试设计求解的程序框图。(3)二元一次不等式组与简单线性规划问题从实际情境中抽象出二元
2、一次不等式组。了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组(参见例2)。从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决(参见例3)。(4)基本不等式:探索并了解基本不等式的证明过程。会用基本不等式解决简单的(小)值问题。高考数学知识点1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。即:方程有实数根函数的图象与轴有交点函数有零点.3、函数零点的求法:求函数的零点:(1)(代数法)求方程的实数根;(2)(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的
3、性质找出零点.4、二次函数的零点:二次函数.1)>0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点.2)=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点.3)<0,方程无实根,二次函数的图象与轴无交点,二次函数无零点.高三年级高考数学知识点1.数列的定义按一定次序排列的一列数叫做数列,数列中的每一个数都叫做数列的项.(1)从数列定义可以看出,数列的数是按一定次序排列的,如果组成数列的数相同而排列次序不同,那么它们就不是同一数列,例如数列1,2,3,4,5与数列5,4,3,2,1是不同的数列.(2)在数列的定义中并
4、没有规定数列中的数必须不同,因此,在同一数列中可以出现多个相同的数字,如:-1的1次幂,2次幂,3次幂,4次幂,构成数列:-1,1,-1,1,.(4)数列的项与它的项数是不同的,数列的项是指这个数列中的某一个确定的数,是一个函数值,也就是相当于f(n),而项数是指这个数在数列中的位置序号,它是自变量的值,相当于f(n)中的n.(5)次序对于数列来讲是十分重要的,有几个相同的数,由于它们的排列次序不同,构成的数列就不是一个相同的数列,显然数列与数集有本质的区别.如:2,3,4,5,6这5个数按不同的次序排列时,就会得到不同的数列,而2,3,4,5,6中元素不论按怎样的次序排列都是同一个集合.2.数列的分类(1)根据数列的项数多少可以对数列进行分类,分为有穷数列和无穷数列.在写数列时,对于有穷数列,要把末项写出,例如数列1,3,5,7,9,2n-1表示有穷数列,如果把数列写成1,3,5,7,9,或1,3,5,7,9,2n-1,它就表示无穷数列.(2)按照项与项之间的大小关系或数列的增减性可以分为以下几类:递增数列、递减数列、摆动数列、常数列.高考数学知识点2021第 3 页 共 3 页