《2022最新高考常用重要数学公式考生必备.doc》由会员分享,可在线阅读,更多相关《2022最新高考常用重要数学公式考生必备.doc(5页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2022最新高考常用重要数学公式考生必备a b 1 |S=1/2 _ | c d 1 | e f 1 |【| a b 1 | c d 1 | 为三阶行列式,此三角形ABC在平面直角坐标系内A(a,b),B(c,d), C(e,f),这里ABC| e f 1 |选区取最好按逆时针顺序从右上角开始取,因为这样取得出的结果一般都为正值,如果不按这个规则取,可能会得到负值,但不要紧,只要取绝对值就可以了,不会影响三角形面积的大小!】高考数学三角函数公式sin=的对边/斜边cos=的邻边/斜边tan=的对边/的邻边cot=的邻边/的对边倍角公式Sin2A=2SinA?CosACos2A=CosA2-Si
2、nA2=1-2SinA2=2CosA2-1tan2A=(2tanA)/(1-tanA2)(注:SinA2是sinA的平方sin2(A)三倍角公式sin3=4sinsin(/3+)sin(/3-)cos3=4coscos(/3+)cos(/3-)tan3a=tanatan(/3+a)tan(/3-a)三倍角公式推导sin3a=sin(2a+a)=sin2acosa+cos2asina三角函数辅助角公式Asin+Bcos=(A2+B2)(1/2)sin(+t),其中sint=B/(A2+B2)(1/2)cost=A/(A2+B2)(1/2)tant=B/AAsin+Bcos=(A2+B2)(1/2
3、)cos(-t),tant=A/B降幂公式sin2()=(1-cos(2)/2=versin(2)/2cos2()=(1+cos(2)/2=covers(2)/2tan2()=(1-cos(2)/(1+cos(2)三角函数推导公式tan+cot=2/sin2tan-cot=-2cot21+cos2=2cos21-cos2=2sin21+sin=(sin/2+cos/2)2=2sina(1-sin2a)+(1-2sin2a)sina=3sina-4sin3acos3a=cos(2a+a)=cos2acosa-sin2asina=(2cos2a-1)cosa-2(1-sin2a)cosa=4cos
4、3a-3cosasin3a=3sina-4sin3a=4sina(3/4-sin2a)=4sina(3/2)2-sin2a=4sina(sin260-sin2a)=4sina(sin60+sina)(sin60-sina)=4sina_2sin(60+a)/2cos(60-a)/2_2sin(60-a)/2cos(60-a)/2=4sinasin(60+a)sin(60-a)cos3a=4cos3a-3cosa=4cosa(cos2a-3/4)=4cosacos2a-(3/2)2=4cosa(cos2a-cos230)=4cosa(cosa+cos30)(cosa-cos30)=4cosa_2
5、cos(a+30)/2cos(a-30)/2_-2sin(a+30)/2sin(a-30)/2=-4cosasin(a+30)sin(a-30)=-4cosasin90-(60-a)sin-90+(60+a)=-4cosacos(60-a)-cos(60+a)=4cosacos(60-a)cos(60+a)上述两式相比可得tan3a=tanatan(60-a)tan(60+a)三角函数半角公式tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.sin2(a/2)=(1-cos(a)/2cos2(a/
6、2)=(1+cos(a)/2tan(a/2)=(1-cos(a)/sin(a)=sin(a)/(1+cos(a)三角函数三角和sin(+)=sincoscos+cossincos+coscossin-sinsinsincos(+)=coscoscos-cossinsin-sincossin-sinsincostan(+)=(tan+tan+tan-tantantan)/(1-tantan-tantan-tantan)三角函数两角和差cos(+)=coscos-sinsincos(-)=coscos+sinsinsin()=sincoscossintan(+)=(tan+tan)/(1-tant
7、an)tan(-)=(tan-tan)/(1+tantan)三角函数和差化积sin+sin=2sin(+)/2cos(-)/2sin-sin=2cos(+)/2sin(-)/2cos+cos=2cos(+)/2cos(-)/2cos-cos=-2sin(+)/2sin(-)/2tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)三角函数积化和差sinsin=cos(-)-cos(+)/2coscos=cos(+)+cos(-)/2sincos=sin(+)
8、+sin(-)/2cossin=sin(+)-sin(-)/2三角函数诱导公式sin(-)=-sincos(-)=costan(a)=-tansin(/2-)=coscos(/2-)=sinsin(/2+)=coscos(/2+)=-sinsin(-)=sincos(-)=-cossin(+)=-sincos(+)=-costanA=sinA/cosAtan(/2+)=-cottan(/2-)=cottan(-)=-tantan(+)=tan诱导公式记背诀窍:奇变偶不变,符号看象限万能公式sin=2tan(/2)/1+tan(/2)cos=1-tan(/2)/1+tan(/2)tan=2tan
9、(/2)/1-tan(/2)其它公式(1)(sin)2+(cos)2=1(2)1+(tan)2=(sec)2(3)1+(cot)2=(csc)2证明下面两式,只需将一式,左右同除(sin)2,第二个除(cos)2即可(4)对于任意非直角三角形,总有tanA+tanB+tanC=tanAtanBtanC证:A+B=-Ctan(A+B)=tan(-C)(tanA+tanB)/(1-tanAtanB)=(tan-tanC)/(1+tantanC)整理可得tanA+tanB+tanC=tanAtanBtanC得证同样可以得证,当x+y+z=n(nZ)时,该关系式也成立由tanA+tanB+tanC=t
10、anAtanBtanC可得出以下结论(5)cotAcotB+cotAcotC+cotBcotC=1(6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)(7)(cosA)2+(cosB)2+(cosC)2=1-2cosAcosBcosC(8)(sinA)2+(sinB)2+(sinC)2=2+2cosAcosBcosC(9)sin+sin(+2/n)+sin(+2_2/n)+sin(+2_3/n)+sin+2_(n-1)/n=0cos+cos(+2/n)+cos(+2_2/n)+cos(+2_3/n)+cos+2_(n-1)/n=0以及sin2()+sin2(-2/3)+sin2(+2/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0高考常用数学公式考生必备第 5 页 共 5 页