《2022最新高一数学知识点总结2021.doc》由会员分享,可在线阅读,更多相关《2022最新高一数学知识点总结2021.doc(4页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2022最新高一数学知识点总结2021每一门科目都有自己的学习方法,但其实都是万变不离其中的,数学其实和语文英语一样,也是要记、要背、要讲练的。下面是小编给大家整理的一些高一数学的知识点,希望对大家有所帮助。高一数学必修二知识点梳理公式一:设为任意角,终边相同的角的同一三角函数的值相等:sin(2k+)=sincos(2k+)=costan(2k+)=tancot(2k+)=cot公式二:设为任意角,+的三角函数值与的三角函数值之间的关系:sin(+)=-sincos(+)=-costan(+)=tancot(+)=cot公式三:任意角与-的三角函数值之间的关系:sin(-)=-sincos(
2、-)=costan(-)=-tancot(-)=-cot公式四:利用公式二和公式三可以得到-与的三角函数值之间的关系:sin(-)=sincos(-)=-costan(-)=-tancot(-)=-cot公式五:利用公式一和公式三可以得到2-与的三角函数值之间的关系:sin(2-)=-sincos(2-)=costan(2-)=-tancot(2-)=-cot公式六:/2及3/2与的三角函数值之间的关系:sin(/2+)=coscos(/2+)=-sintan(/2+)=-cotcot(/2+)=-tansin(/2-)=coscos(/2-)=sintan(/2-)=cotcot(/2-)=
3、tansin(3/2+)=-coscos(3/2+)=sintan(3/2+)=-cotcot(3/2+)=-tansin(3/2-)=-coscos(3/2-)=-sintan(3/2-)=cotcot(3/2-)=tan高一年级数学知识点梳理1.函数的奇偶性。(1)若f(x)是偶函数,那么f(x)=f(-x)。(2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数)。(3)判断函数奇偶性可用定义的等价形式:f(x)f(-x)=0或(f(x)0)。(4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性。(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内
4、有相反的单调性。2.复合函数的有关问题。(1)复合函数定义域求法:若已知的定义域为a,b,其复合函数fg(x)的定义域由不等式ag(x)b解出即可;若已知fg(x)的定义域为a,b,求f(x)的定义域,相当于xa,b时,求g(x)的值域(即f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。(2)复合函数的单调性由“同增异减”判定。3.函数图像(或方程曲线的对称性)。(1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上。(2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然。(3)曲线C1:f(x,y)
5、=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0)。(4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0。(5)若函数y=f(x)对xR时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称。4.函数的周期性。(1)y=f(x)对xR时,f(x+a)=f(x-a)或f(x-2a)=f(x)(a>0)恒成立,则y=f(x)是周期为2a的周期函数。(2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2a的周期函数。(3)若y=f(x)奇函
6、数,其图像又关于直线x=a对称,则f(x)是周期为4a的周期函数。(4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2的周期函数。5.判断对应是否为映射时,抓住两点。(1)A中元素必须都有象且。(2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象。6.能熟练地用定义证明函数的单调性,求反函数,判断函数的奇偶性。高一下册数学必修一知识点梳理一、指数函数(一)指数与指数幂的运算1.根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且.当是奇数时,正数的次方根是一个正数,负数的次方根是一个负数.此时,的次方根用符号表示.式子叫做根式(r
7、adical),这里叫做根指数(radicalexponent),叫做被开方数(radicand).当是偶数时,正数的次方根有两个,这两个数互为相反数.此时,正数的正的次方根用符号表示,负的次方根用符号-表示.正的次方根与负的次方根可以合并成(>0).由此可得:负数没有偶次方根;0的任何次方根都是0,记作。注意:当是奇数时,当是偶数时,2.分数指数幂正数的分数指数幂的意义,规定:0的正分数指数幂等于0,0的负分数指数幂没有意义指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂.3.实数指数幂的运算性质(二)指数函数及其性质1、指数函数的概念:一般地,函数叫做指数函数(exponential),其中x是自变量,函数的定义域为R.注意:指数函数的底数的取值范围,底数不能是负数、零和1.2、指数函数的图象和性质高一数学知识点第 4 页 共 4 页