2022最新职业高中高二数学教案2021文案.doc

上传人:be****23 文档编号:18323169 上传时间:2022-05-30 格式:DOC 页数:15 大小:26.50KB
返回 下载 相关 举报
2022最新职业高中高二数学教案2021文案.doc_第1页
第1页 / 共15页
2022最新职业高中高二数学教案2021文案.doc_第2页
第2页 / 共15页
点击查看更多>>
资源描述

《2022最新职业高中高二数学教案2021文案.doc》由会员分享,可在线阅读,更多相关《2022最新职业高中高二数学教案2021文案.doc(15页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2022最新职业高中高二数学教案2021文案教学资源包括教师可以利用的各种软硬件资源。教师在进行教学设计时,应尽可能多地搜集各种相关资源。如充分利用多媒体软件、有效的教具辅具以及社区中可以用的相关资源等。今天小编在这里给大家分享一些有关于职业高中高二数学教案2021文案,希望可以帮助到大家。职业高中高二数学教案2021文案1一、教学目标(1)了解含有“或”、“且”、“非”复合命题的概念及其构成形式;(2)理解逻辑联结词“或”“且”“非”的含义;(3)能用逻辑联结词和简单命题构成不同形式的复合命题;(4)能识别复合命题中所用的逻辑联结词及其联结的简单命题;(5)会用真值表判断相应的复合命题的真假

2、;(6)在知识学习的基础上,培养学生简单推理的技能.二、教学重点难点:重点是判断复合命题真假的方法;难点是对“或”的含义的理解.三、教学过程1.新课导入在当今社会中,人们从事任何工作、学习,都离不开逻辑.具有一定逻辑知识是构成一个公民的文化素质的重要方面.数学的特点是逻辑性强,特别是进入高中以后,所学的教学比初中更强调逻辑性.如果不学习一定的逻辑知识,将会在我们学习的过程中不知不觉地经常犯逻辑性的错误.其实,同学们在初中已经开始接触一些简易逻辑的知识.初一平面几何中曾学过命题,请同学们举一个命题的例子.(板书:命题.)(从初中接触过的“命题”入手,提出问题,进而学习逻辑的有关知识.)学生举例:

3、平行四边形的对角线互相平. (1)两直线平行,同位角相等.(2)教师提问:“相等的角是对顶角”是不是命题?(3)(同学议论结果,答案是肯定的.)教师提问:什么是命题?(学生进行回忆、思考.)概念总结:对一件事情作出了判断的语句叫做命题.(教师肯定了同学的回答,并作板书.)由于判断有正确与错误之分,所以命题有真假之分,命题(1)、(2)是真命题,而(3)是假命题.(教师利用投影片,和学生讨论以下问题.)例1 判断以下各语句是不是命题,若是,判断其真假:命题一定要对一件事情作出判断,(3)、(4)没有对一件事情作出判断,所以它们不是命题.初中所学的命题概念涉及逻辑知识,我们今天开始要在初中学习的基

4、础上,介绍简易逻辑的知识.2.讲授新课大家看课本(人教版,试验修订本,第一册(上)从第25页至26页例1前,并归纳一下这段内容主要讲了哪些问题?(片刻后请同学举手回答,一共讲了四个问题.师生一道归纳如下.)(1)什么叫做命题?可以判断真假的语句叫做命题.判断一个语句是不是命题,关键看这语句有没有对一件事情作出了判断,疑问句、祈使句都不是命题.有些语句中含有变量,如 中含有变量 ,在不给定变量的值之前,我们无法确定这语句的真假(这种含有变量的语句叫做“开语句”).(2)介绍逻辑联结词“或”、“且”、“非”.“或”、“且”、“非”这些词叫做逻辑联结词.逻辑联结词除这三种形式外,还有“若则”和“当且

5、仅当”两种形式.对“或”的理解,可联想到集合中“并集”的概念. 中的“或”,它是指“ ”、“ ”中至少一个是成立的,即 且 ;也可以 且 ;也可以 且 .这与生活中“或”的含义不同,例如“你去或我去”,理解上是排斥你我都去这种可能.对“且”的理解,可联想到集合中“交集”的概念. 中的“且”,是指“ ”、“ 这两个条件都要满足的意思.对“非”的理解,可联想到集合中的“补集”概念,若命题 对应于集合 ,则命题非 就对应着集合 在全集 中的补集 .命题可分为简单命题和复合命题.不含逻辑联结词的命题叫做简单命题.简单命题是不含其他命题作为其组成部分(在结构上不能再分解成其他命题)的命题.由简单命题和逻

6、辑联结词构成的命题叫做复合命题,如“6是自然数且是偶数”就是由简单命题“6是自然数”和“6是偶数”由逻辑联结词“且”构成的复合命题.(4)命题的表示:用 , , , ,来表示.(教师根据学生回答的情况作补充和强调,特别是对复合命题的概念作出分析和展开.)我们接触的复合命题一般有“ 或 ”、“ 且 ”、“非 ”、“若 则 ”等形式.给出一个含有“或”、“且”、“非”的复合命题,应能说出构成它的简单命题和弄清它所用的逻辑联结词;应能根据所给出的两个简单命题,写出含有逻辑联结词“或”、“且”、“非”的复合命题.对于给出“若 则 ”形式的复合命题,应能找到条件 和结论 .在判断一个命题是简单命题还是复

7、合命题时,不能只从字面上来看有没有“或”、“且”、“非”.例如命题“等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合”,此命题字面上无“且”;命题“5的倍数的末位数字不是0就是5”的字面上无“或”,但它们都是复合命题.3.巩固新课例2 判断下列命题,哪些是简单命题,哪些是复合命题.如果是复合命题,指出它的构成形式以及构成它的简单命题.(1) ;(2)0.5非整数;(3)内错角相等,两直线平行;(4)菱形的对角线互相垂直且平分;(5)平行线不相交;(6)若 ,则 .(让学生有充分的时间进行辨析.教材中对“若则”不作要求,教师可以根据学生的情况作些补充.)例3 写出下表中各给定语的否定语(

8、用课件打出来).分析:“等于”的否定语是“不等于”;“大于”的否定语是“小于或者等于”;“是”的否定语是“不是”;“都是”的否定语是“不都是”;“至多有一个”的否定语是“至少有两个”;“至少有一个”的否定语是“一个都没有”;“至多有 个”的否定语是“至少有 个”.(如果时间宽裕,可让学生讨论后得出结论.)置疑:“或”、“且”的否定是什么?(视学生的情况、课堂时间作适当的辨析与展开.)4.课堂练习:第26页练习1,2.5.课外作业:第29页习题1.6 1,2.职业高中高二数学教案2021文案2一、教学思想:使学生在九年义务教育数学课程的基础上,进一步提高作为未来公民所必要的数学素养,以满足个人发

9、展与社会进步的需要。具体目标如下。1.获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。2.提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本能力。3.提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。4.发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。5.提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科

10、学态度。 6.具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。二、教材特点:我们所使用的教材是人教版普通高中课程标准实验教科书数学(A版),它在坚持我国数学教育优良传统的前提下,认真处理继承,借签,发展,创新之间的关系,体现基础性,时代性,典型性和可接受性等到,具有如下特点:1.“亲和力”:以生动活泼的呈现方式,激发兴趣和美感,引发学习激情。2.“问题性”:以恰时恰点的问题引导数学活动,培养问题意识,孕育创新精神。3.“科学性”与“思想性”:通过不同数学内容的联系与启发

11、,强调类比,推广,特殊化,化归等思想方法的运用,学习数学地思考问题的方式,提高数学思维能力,培育理性精神。4.“时代性”与“应用性”:以具有时代性和现实感的素材创设情境,加强数学活动,发展应用意识。三、教法分析:1. 选取与内容密切相关的,典型的,丰富的和学生熟悉的素材,用生动活泼的语言,创设能够体现数学的概念和结论,数学的思想和方法,以及数学应用的学习情境,使学生产生对数学的亲切感,引发学生“看个究竟”的冲动,以达到培养其兴趣的目的。2. 通过“观察”,“思考”,“探究”等栏目,引发学生的思考和探索活动,切实改进学生的学习方式。3. 在教学中强调类比,推广,特殊化,化归等数学思想方法,尽可能

12、养成其逻辑思维的习惯。四、学情分析:两个班一个普高一个职高,学习情况良好,但学生自觉性差,自我控制能力弱,因此在教学中需时时提醒学生,培养其自觉性。班级存在的问题是计算能力太差,学生不喜欢去算题,嫌麻烦,只注重思路,因此在以后的教学中,重点在于培养学生的计算能力,同时要进一步提高其思维能力。同时,由于初中课改的原因,高中教材与初中教材衔接力度不够,需在新授时适机补充一些内容。因此时间上可能仍然吃紧。同时,其底子薄弱,因此在教学时只能注重基础再基础,争取每一堂课落实一个知识点,掌握一个知识点。五、教学措施:1、激发学生的学习兴趣。由数学活动、故事、吸引人的课、合理的要求、师生谈话等途径树立学生的

13、学习信心,提高学习兴趣,在主观作用下上升和进步。2、注意从实例出发,从感性提高到理性;注意运用对比的方法,反复比较相近的概念;注意结合直观图形,说明抽象的知识;注意从已有的知识出发,启发学生思考。3、加强培养学生的逻辑思维能力就解决实际问题的能力,以及培养提高学生的自学能力,养成善于分析问题的习惯,进行辨证唯物主义教育。4、抓住公式的推导和内在联系;加强复习检查工作;抓住典型例题的分析,讲清解题的关键和基本方法,注重提高学生分析问题的能力。5、自始至终贯彻教学四环节,针对不同的教材内容选择不同教法。6、重视数学应用意识及应用能力的培养。职业高中高二数学教案2021文案3一、教材分析1、 教材的

14、地位和作用(1)本节课主要对函数单调性的学习;(2)它是在学习函数概念的基础上进行学习的,同时又为基本初等函数的学习奠定了基础,所以他在教材中起着承前启后的重要作用;(可以看看这一课题的前后章节来写)(3)它是历年高考的热点、难点问题(根据具体的课题改变就行了,如果不是热点难点问题就删掉)2、 教材重、难点重点:函数单调性的定义难点:函数单调性的证明重难点突破:在学生已有知识的基础上,通过认真观察思考,并通过小组合作探究的办法来实现重难点突破。(这个必须要有)二、教学目标知识目标:(1)函数单调性的定义(2)函数单调性的证明能力目标:培养学生全面分析、抽象和概括的能力,以及了解由简单到复杂,由

15、特殊到一般的化归思想情感目标:培养学生勇于探索的精神和善于合作的意识(这样的教学目标设计更注重教学过程和情感体验,立足教学目标多元化)三、教法学法分析1、教法分析“教必有法而教无定法”,只有方法得当才会有效。新课程标准之处教师是教学的组织者、引导者、合作者,在教学过程要充分调动学生的积极性、主动性。本着这一原则,在教学过程中我主要采用以下教学方法:开放式探究法、启发式引导法、小组合作讨论法、反馈式评价法2、学法分析“授人以鱼,不如授人以渔”,最有价值的知识是关于方法的只是。学生作为教学活动的主题,在学习过程中的参与状态和参与度是影响教学效果最重要的因素。在学法选择上,我主要采用:自主探究法、观

16、察发现法、合作交流法、归纳总结法。(前三部分用时控制在三分钟以内,可适当删减)四、教学过程1、以旧引新,导入新知通过课前小研究让学生自行绘制出一次函数f(x)=x和二次函数f(x)=x2的图像,并观察函数图象的特点,总结归纳。通过课上小组讨论归纳,引导学生发现,教师总结:一次函数f(x)=x的图像在定义域是直线上升的,而二次函数f(x)=x2的图像是一个曲线,在(-,0)上是下降的,而在(0,+)上是上升的。(适当添加手势,这样看起来更自然)2、创设问题,探索新知紧接着提出问题,你能用二次函数f(x)=x2表达式来描述函数在(-,0)的图像?教师总结,并板书,揭示函数单调性的定义,并注意强调可

17、以利用作差法来判断这个函数的单调性。让学生模仿刚才的表述法来描述二次函数f(x)=x2在(0,+)的图像,并找个别同学起来作答,规范学生的数学用语。让学生自主学习函数单调区间的定义,为接下来例题学习打好基础。3、 例题讲解,学以致用例1主要是对函数单调区间的巩固运用,通过观察函数定义在(5,5)的图像来找出函数的单调区间。这一例题主要以学生个别回答为主,学生回答之后通过互评来纠正答案,检查学生对函数单调区间的掌握。强调单调区间一般写成半开半闭的形式例题讲解之后可让学生自行完成课后练习4,以学生集体回答的方式检验学生的学习效果。例2是将函数单调性运用到其他领域,通过函数单调性来证明物理学的波意尔

18、定理。这是历年高考的热点跟难点问题,这一例题要采用教师板演的方式,来对例题进行证明,以规范总结证明步骤。一设二差三化简四比较,注意要把f(x1)-f(x2)化简成和差积商的形式,再比较与0的大小。学生在熟悉证明步骤之后,做课后练习3,并以小组为单位找部分同学上台板演,其他同学在下面自行完成,并通过自评、互评检查证明步骤。4、归纳小结本节课我们主要学习了函数单调性的定义及证明过程,并在教学过程中注重培养学生勇于探索的精神和善于合作的意识。5、作业布置为了让学生学习不同的数学,我将采用分层布置作业的方式:一组 习题1.3A组1、2、3 ,二组 习题1.3A组2、3、B组1、26、板书设计我力求简洁

19、明了地概括本节课的学习要点,让学生一目了然。(这部分最重要用时六到七分钟,其中定义讲解跟例题讲解一定要说明学生的活动)五、教学评价本节课是在学生已有知识的基础上学习的,在教学过程中通过自主探究、合作交流,充分调动学生的积极性跟主动性,及时吸收反馈信息,并通过学生的自评、互评,让内部动机和外界刺激协调作用,促进其数学素养不断提高。职业高中高二数学教案2021文案4【学习导航】(一)两角和与差公式(二)倍角公式2cos2=1+cos2 2sin2=1-cos2注意:倍角公式揭示了具有倍数关系的两个角的三角函数的运算规律,可实现函数式的降幂的变化。注: (1)两角和与差的三角函数公式能够解答的三类基

20、本题型:求值题,化简题,证明题。(2)对公式会“正用”,“逆用”,“变形使用”;(3)掌握“角的演变”规律,(4)将公式和其它知识衔接起来使用。重点难点重点:几组三角恒等式的应用难点:灵活应用和、差、倍角等公式进行三角式化简、求值、证明恒等式【精典范例】例1 已知求证:例2 已知 求 的取值范围分析 难以直接用 的式子来表达,因此设 ,并找出 应满足的等式,从而求出 的取值范围.例3 求函数 的值域.例4 已知且 、 、 均为钝角,求角 的值.分析 仅由 ,不能确定角 的值,还必须找出角 的范围,才能判断 的值. 由单位圆中的余弦线可以看出,若 使 的角为 或 若 则 或【选修延伸】例5 已知

21、求 的值.例6 已知 ,求 的值.例7 已知求 的值.例8 求值:(1) (2)【追踪训练】1. 等于 ( )A. B. C. D.2.已知 ,且,则 的值等于 ( )A. B. C. D.3.求值: = .4.求证:(1)职业高中高二数学教案2021文案5教学目标:掌握对数函数的性质。应用对数函数的性质可以解决:对数的大小比较,求复合函数的定义域、值 域及单调性。 注重函数思想、等价转化、分类讨论等思想的渗透,提高解题能力。教学重点与难点:对数函数的性质的应用。教学过程设计:复习提问:对数函数的概念及性质。开始正课1 比较数的大小例 1 比较下列各组数的大小。loga5.1 ,loga5.9

22、 (a>0,a1)log0.50.6 ,log0.5 ,ln师:请同学们观察一下中这两个对数有何特征?生:这两个对数底相等。师:那么对于两个底相等的对数如何比大小?生:可构造一个以a为底的对数函数,用对数函数的单调性比大小。师:对,请叙述一下这道题的解题过程。生:对数函数的单调性取决于底的大小:当0调递减,所以loga5.1>loga5.9 ;当a>1时,函数y=logax单调递增,所以loga5.1板书:解:)当05.1<5.9 loga5.1>loga5.9)当a>1时,函数y=logax在(0,+)上是增函数,5.1<5.9 loga5.1师:请

23、同学们观察一下中这三个对数有何特征?生:这三个对数底、真数都不相等。师:那么对于这三个对数如何比大小?生:找“中间量”, log0.50.6>0,ln>0,log0.5<0;ln>1,log0.50.6<1,所以log0.5< log0.50.6< ln。板书:略。师:比较对数值的大小常用方法:构造对数函数,直接利用对数函数 的单调性比大小,借用“中间量”间接比大小,利用对数函数图象的位置关系来比大小。2 函数的定义域, 值 域及单调性。例 2 求函数y=的定义域。解不等式log0.2(x2+2x-3)>log0.2(3x+3)师:如何来求中函数

24、的定义域?(提示:求函数的定义域,就是要使函数有意义。若函数中含有分母,分母不为零;有偶次根式,被开方式大于或等于零;若函数中有对数的形式,则真数大于零,如果函数中同时出现以上几种情况,就要全部考虑进去,求它们共同作用的结果。)生:分母2x-10且偶次根式的被开方式log0.8x-10,且真数x>0。板书:解: 2x-10 x0.5log0.8x-10 , x0.8x>0 x>0x(0,0.5)(0.5,0.8师:接下来我们一起来解这个不等式。分析:要解这个不等式,首先要使这个不等式有意义,即真数大于零,再根据对数函数的单调性求解。师:请你写一下这道题的解题过程。生:<

25、板书>解: x2+2x-3>0 x<-3 或 x>1(3x+3)>0 , x>-1x2+2x-3<(3x+3) -2不等式的解为:1例 3 求下列函数的值域和单调区间。y=log0.5(x- x2)y=loga(x2+2x-3)(a>0,a1)师:求例3中函数的的值域和单调区间要用及复合函数的思想方法。下面请同学们来解。生:此函数可看作是由y= log0.5u, u= x- x2复合而成。板书:解:u= x- x2>0, 0u= x- x2=-(x-0.5)2+0.25, 0y= log0.5ulog0.50.25=2y2x x(0,0.5

26、 x0.5,1)u= x- x2y= log0.5uy=log0.5(x- x2)函数y=log0.5(x- x2)的单调递减区间(0,0.5,单调递 增区间0.5,1)注:研究任何函数的性质时,都应该首先保证这个函数有意义,否则函数都不存在,性质就无从谈起。师:在的基础上,我们一起来解。请同学们观察一下与有什么区别?生:的底数是常值,的底数是字母。师:那么如何来解?生:只要对a进行分类讨论,做法与类似。板书:略。小结这堂课主要讲解如何应用对数函数的性质解决一些问题,希望能通过这堂课使同学们对等价转化、分类讨论等思想加以应用,提高解题能力。作业解不等式lg(x2-3x-4)lg(2x+10);

27、loga(x2-x)loga(x+1),(a为常数)已知函数y=loga(x2-2x),(a>0,a1)求它的单调区间;当0已知函数y=loga (a>0, b>0, 且 a1)求它的定义域;讨论它的奇偶性; 讨论它的单调性。已知函数y=loga(ax-1) (a>0,a1),求它的定义域;当x为何值时,函数值大于1;讨论它的单调性。5.课堂教学设计说明这节课是安排为习题课,主要利用对数函数的性质解决一些问题,整个一堂课分两个部分:一 .比较数的大小,想通过这一部分的练习,培养同学们构造函数的思想和分类讨论、数形结合的思想。二.函数的定义域, 值 域及单调性,想通过这一部分的练习,能使同学们重视求函数的定义域。因为学生在求函数的值域和单调区间时,往往不考虑函数的定义域,并且这种错误很顽固,不易纠正。因此,力求学生做到想法正确,步骤清晰。为了调动学生的积极性,突出学生是课堂的主体,便把例题分了层次,由易到难,力求做到每题都能由学生独立完成。但是,每一道题的解题过程,老师都应该给以板书,这样既让学生有了获取新知识的快乐,又不必为了解题格式的不熟悉而烦恼。每一题讲完后,由教师简明扼要地小结,以使好学生掌握地更完善,较差的学生也能够跟上。职业高中高二数学教案文案第 15 页 共 15 页

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 工作报告

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁