《2022最新沪教版七年级数学教案最新例文.doc》由会员分享,可在线阅读,更多相关《2022最新沪教版七年级数学教案最新例文.doc(14页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2022最新沪教版七年级数学教案最新例文教学难点,是学生难于理解或领会的内容,或较抽象,或较复杂,或较深奥。教师要善于从知识的发展规律(由简单到复杂、由具体到抽象)确定难点,进行教学。那么应该怎么写好教案呢?今天小编在这里给大家分享一些有关于沪教版七年级数学教案最新例文,希望可以帮助到大家。沪教版七年级数学教案最新例文1教材内容1.本单元教学的主要内容:二次根式的概念;二次根式的加减;二次根式的乘除;最简二次根式.2.本单元在教材中的地位和作用:二次根式是在学完了八年级下册第十七章反比例正函数、第十八章勾股定理及其应用等内容的基础之上继续学习的,它也是今后学习其他数学知识的基础.教学目标1.知
2、识与技能(1)理解二次根式的概念.(2)理解 (a0)是一个非负数,( )2=a(a0), =a(a0).(3)掌握 = (a0,b0), = ;= (a0,b>0), = (a0,b>0).(4)了解最简二次根式的概念并灵活运用它们对二次根式进行加减.2.过程与方法(1)先提出问题,让学生探讨、分析问题,师生共同归纳,得出概念.再对概念的内涵进行分析,得出几个重要结论,并运用这些重要结论进行二次根式的计算和化简.(2)用具体数据探究规律,用不完全归纳法得出二次根式的乘(除)法规定,并运用规定进行计算.(3)利用逆向思维,得出二次根式的乘(除)法规定的逆向等式并运用它进行化简.(4
3、)通过分析前面的计算和化简结果,抓住它们的共同特点,给出最简二次根式的概念.利用最简二次根式的概念,来对相同的二次根式进行合并,达到对二次根式进行计算和化简的目的.3.情感、态度与价值观通过本单元的学习培养学生:利用规定准确计算和化简的严谨的科学精神,经过探索二次根式的重要结论,二次根式的乘除规定,发展学生观察、分析、发现问题的能力.教学重点1.二次根式 (a0)的内涵. (a0)是一个非负数;( )2=a(a0); =a(a0)及其运用.2.二次根式乘除法的规定及其运用.3.最简二次根式的概念.4.二次根式的加减运算.教学难点1.对 (a0)是一个非负数的理解;对等式( )2=a(a0)及
4、=a(a0)的理解及应用.2.二次根式的乘法、除法的条件限制.3.利用最简二次根式的概念把一个二次根式化成最简二次根式.教学关键1.潜移默化地培养学生从具体到一般的推理能力,突出重点,突破难点.2.培养学生利用二次根式的规定和重要结论进行准确计算的能力,培养学生一丝不苟的科学精神.单元课时划分本单元教学时间约需11课时,具体分配如下:21.1 二次根式 3课时21.2 二次根式的乘法 3课时21.3 二次根式的加减 3课时教学活动、习题课、小结 2课时沪教版七年级数学教案最新例文2教学内容二次根式的概念及其运用教学目标理解二次根式的概念,并利用 (a0)的意义解答具体题目.提出问题,根据问题给
5、出概念,应用概念解决实际问题.教学重难点关键1.重点:形如 (a0)的式子叫做二次根式的概念;2.难点与关键:利用“ (a0)”解决具体问题.教学过程一、复习引入(学生活动)请同学们独立完成下列三个问题:问题1:已知反比例函数y= ,那么它的图象在第一象限横、纵坐标相等的点的坐标是_.问题2:如图,在直角三角形ABC中,AC=3,BC=1,C=90,那么AB边的长是_.问题3:甲射击6次,各次击中的环数如下:8、7、9、9、7、8,那么甲这次射击的方差是S2,那么S=_.老师点评:问题1:横、纵坐标相等,即x=y,所以x2=3.因为点在第一象限,所以x= ,所以所求点的坐标( , ).问题2:
6、由勾股定理得AB=问题3:由方差的概念得S= .二、探索新知很明显 、 、 ,都是一些正数的算术平方根.像这样一些正数的算术平方根的式子,我们就把它称二次根式.因此,一般地,我们把形如 (a0)的式子叫做二次根式,“ ”称为二次根号.(学生活动)议一议:1.-1有算术平方根吗?2.0的算术平方根是多少?3.当a<0, 有意义吗?老师点评:(略)例1.下列式子,哪些是二次根式,哪些不是二次根式: 、 、 、 (x>0)、 、 、- 、 、 (x0,y0).分析:二次根式应满足两个条件:第一,有二次根号“ ”;第二,被开方数是正数或0.解:二次根式有: 、 (x>0)、 、- 、
7、 (x0,y0);不是二次根式的有: 、 、 、 .例2.当x是多少时, 在实数范围内有意义?分析:由二次根式的定义可知,被开方数一定要大于或等于0,所以3x-10, 才能有意义.解:由3x-10,得:x当x 时, 在实数范围内有意义.三、巩固练习教材P练习1、2、3.四、应用拓展例3.当x是多少时, + 在实数范围内有意义?分析:要使 + 在实数范围内有意义,必须同时满足 中的0和 中的x+10.解:依题意,得由得:x-由得:x-1当x- 且x-1时, + 在实数范围内有意义.例4(1)已知y= + +5,求 的值.(答案:2)(2)若 + =0,求a2004+b2004的值.(答案: )五
8、、归纳小结(学生活动,老师点评)本节课要掌握:1.形如 (a0)的式子叫做二次根式,“ ”称为二次根号.2.要使二次根式在实数范围内有意义,必须满足被开方数是非负数.六、布置作业1.教材P8复习巩固1、综合应用5.2.选用课时作业设计.3.课后作业:同步训练第一课时作业设计一、选择题 1.下列式子中,是二次根式的是( )A.- B. C. D.x2.下列式子中,不是二次根式的是( )A. B. C. D.3.已知一个正方形的面积是5,那么它的边长是( )A.5 B. C. D.以上皆不对二、填空题1.形如_的式子叫做二次根式.2.面积为a的正方形的边长为_.3.负数_平方根.三、综合提高题1.
9、某工厂要制作一批体积为1m3的产品包装盒,其高为0.2m,按设计需要,底面应做成正方形,试问底面边长应是多少?2.当x是多少时, +x2在实数范围内有意义?3.若 + 有意义,则 =_.4.使式子 有意义的未知数x有( )个.A.0 B.1 C.2 D.无数5.已知a、b为实数,且 +2 =b+4,求a、b的值.第一课时作业设计答案:一、1.A 2.D 3.B二、1. (a0) 2. 3.没有三、1.设底面边长为x,则0.2x2=1,解答:x= .2.依题意得: ,当x>- 且x0时, +x2在实数范围内没有意义.3.4.B5.a=5,b=-4沪教版七年级数学教案最新例文3教学内容1.
10、(a0)是一个非负数;2.( )2=a(a0).教学目标理解 (a0)是一个非负数和( )2=a(a0),并利用它们进行计算和化简.通过复习二次根式的概念,用逻辑推理的方法推出 (a0)是一个非负数,用具体数据结合算术平方根的意义导出( )2=a(a0);最后运用结论严谨解题.教学重难点关键1.重点: (a0)是一个非负数;( )2=a(a0)及其运用.2.难点、关键:用分类思想的方法导出 (a0)是一个非负数;用探究的方法导出( )2=a(a0).教学过程一、复习引入(学生活动)口答1.什么叫二次根式?2.当a0时, 叫什么?当a<0时, 有意义吗?老师点评(略).二、探究新知议一议:
11、(学生分组讨论,提问解答)(a0)是一个什么数呢?老师点评:根据学生讨论和上面的练习,我们可以得出(a0)是一个非负数.做一做:根据算术平方根的意义填空:( )2=_;( )2=_;( )2=_;( )2=_;( )2=_;( )2=_;( )2=_.老师点评: 是4的算术平方根,根据算术平方根的意义, 是一个平方等于4的非负数,因此有( )2=4.同理可得:( )2=2,( )2=9,( )2=3,( )2= ,( )2= ,( )2=0,所以( )2=a(a0)例1 计算1.( )2 2.(3 )2 3.( )2 4.( )2分析:我们可以直接利用( )2=a(a0)的结论解题.解:( )
12、2 = ,(3 )2 =32( )2=325=45,( )2= ,( )2= .三、巩固练习计算下列各式的值:( )2 ( )2 ( )2 ( )2 (4 )2四、应用拓展例2 计算1.( )2(x0) 2.( )2 3.( )24.( )2分析:(1)因为x0,所以x+1>0;(2)a20;(3)a2+2a+1=(a+1)0;(4)4x2-12x+9=(2x)2-22x3+32=(2x-3)20.所以上面的4题都可以运用( )2=a(a0)的重要结论解题.解:(1)因为x0,所以x+1>0( )2=x+1(2)a20,( )2=a2(3)a2+2a+1=(a+1)2又(a+1)2
13、0,a2+2a+10 , =a2+2a+1(4)4x2-12x+9=(2x)2-22x3+32=(2x-3)2又(2x-3)204x2-12x+90,( )2=4x2-12x+9例3在实数范围内分解下列因式:(1)x2-3 (2)x4-4 (3) 2x2-3分析:(略)五、归纳小结本节课应掌握:1. (a0)是一个非负数;2.( )2=a(a0);反之:a=( )2(a0).六、布置作业1.教材P8 复习巩固2.(1)、(2) P9 7.2.选用课时作业设计.3.课后作业:同步训练沪教版七年级数学教案最新例文4一元二次方程1.通过类比一元一次方程,了解一元二次方程的概念及一般式ax2+bx+c
14、=0(a0),分清二次项及其系数、一次项及其系数与常数项等概念.2.了解一元二次方程的解的概念,会检验一个数是不是一元二次方程的解.重点通过类比一元一次方程,了解一元二次方程的概念及一般式ax2+bx+c=0(a0)和一元二次方程的解等概念,并能用这些概念解决简单问题.难点一元二次方程及其二次项系数、一次项系数和常数项的识别.活动1复习旧知1.什么是方程?你能举一个方程的例子吗?2.下列哪些方程是一元一次方程?并给出一元一次方程的概念和一般形式.(1)2x-1(2)mx+n=0(3)1x+1=0(4)x2=13.下列哪个实数是方程2x-1=3的解?并给出方程的解的概念.A.0B.1C.2D.3
15、活动2探究新知根据题意列方程.1.教材第2页问题1.提出问题:(1)正方形的大小由什么量决定?本题应该设哪个量为未知数?(2)本题中有什么数量关系?能利用这个数量关系列方程吗?怎么列方程?(3)这个方程能整理为比较简单的形式吗?请说出整理之后的方程.2.教材第2页问题2.提出问题:(1)本题中有哪些量?由这些量可以得到什么?(2)比赛队伍的数量与比赛的场次有什么关系?如果有5个队参赛,每个队比赛几场?一共有20场比赛吗?如果不是20场比赛,那么究竟比赛多少场?(3)如果有x个队参赛,一共比赛多少场呢?3.一个数比另一个数大3,且两个数之积为0,求这两个数.提出问题:本题需要设两个未知数吗?如果
16、可以设一个未知数,那么方程应该怎么列?4.一个正方形的面积的2倍等于25,这个正方形的边长是多少?活动3归纳概念提出问题:(1)上述方程与一元一次方程有什么相同点和不同点?(2)类比一元一次方程,我们可以给这一类方程取一个什么名字?(3)归纳一元二次方程的概念.1.一元二次方程:只含有_个未知数,并且未知数的次数是_,这样的_方程,叫做一元二次方程.2.一元二次方程的一般形式是ax2+bx+c=0(a0),其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.提出问题:(1)一元二次方程的一般形式有什么特点?等号的左、右分别是什么?(2)为什么要限制a0,b,c可以为0
17、吗?(3)2x2-x+1=0的一次项系数是1吗?为什么?3.一元二次方程的解(根):使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解(根).活动4例题与练习例1在下列方程中,属于一元二次方程的是_.(1)4x2=81;(2)2x2-1=3y;(3)1x2+1x=2;(4)2x2-2x(x+7)=0.总结:判断一个方程是否是一元二次方程的依据:(1)整式方程;(2)只含有一个未知数;(3)含有未知数的项的次数是2.注意有些方程化简前含有二次项,但是化简后二次项系数为0,这样的方程不是一元二次方程.例2教材第3页例题.例3以-2为根的一元二次方程是()A.x2+2x-1=0 B.x2-x
18、-2=0C.x2+x+2=0 D.x2+x-2=0总结:判断一个数是否为方程的解,可以将这个数代入方程,判断方程左、右两边的值是否相等.练习:1.若(a-1)x2+3ax-1=0是关于x的一元二次方程,那么a的取值范围是_.2.将下列一元二次方程化为一般形式,并分别指出它们的二次项系数、一次项系数和常数项.(1)4x2=81;(2)(3x-2)(x+1)=8x-3.3.教材第4页练习第2题.4.若-4是关于x的一元二次方程2x2+7x-k=0的一个根,则k的值为_.答案:1.a1;2.略;3.略;4.k=4.活动5课堂小结与作业布置课堂小结我们学习了一元二次方程的哪些知识?一元二次方程的一般形
19、式是什么?一般形式中有什么限制?你能解一元二次方程吗?作业布置教材第4页习题21.1第17题.21.2解一元二次方程21.2.1配方法(3课时)第1课时直接开平方法理解一元二次方程“降次”转化的数学思想,并能应用它解决一些具体问题.提出问题,列出缺一次项的一元二次方程ax2+c=0,根据平方根的意义解出这个方程,然后知识迁移到解a(ex+f)2+c=0型的一元二次方程.重点运用开平方法解形如(x+m)2=n(n0)的方程,领会降次转化的数学思想.难点通过根据平方根的意义解形如x2=n的方程,将知识迁移到根据平方根的意义解形如(x+m)2=n(n0)的方程.一、复习引入学生活动:请同学们完成下列
20、各题.问题1:填空(1)x2-8x+_=(x-_)2;(2)9x2+12x+_=(3x+_)2;(3)x2+px+_=(x+_)2.解:根据完全平方公式可得:(1)164;(2)42;(3)(p2)2p2.问题2:目前我们都学过哪些方程?二元怎样转化成一元?一元二次方程与一元一次方程有什么不同?二次如何转化成一次?怎样降次?以前学过哪些降次的方法?二、探索新知上面我们已经讲了x2=9,根据平方根的意义,直接开平方得x=3,如果x换元为2t+1,即(2t+1)2=9,能否也用直接开平方的方法求解呢?(学生分组讨论)老师点评:回答是肯定的,把2t+1变为上面的x,那么2t+1=3即2t+1=3,2
21、t+1=-3方程的两根为t1=1,t2=-2例1解方程:(1)x2+4x+4=1(2)x2+6x+9=2分析:(1)x2+4x+4是一个完全平方公式,那么原方程就转化为(x+2)2=1.(2)由已知,得:(x+3)2=2直接开平方,得:x+3=2即x+3=2,x+3=-2所以,方程的两根x1=-3+2,x2=-3-2解:略.例2市政府计划2年内将人均住房面积由现在的10 m2提高到14.4 m2,求每年人均住房面积增长率.分析:设每年人均住房面积增长率为x,一年后人均住房面积就应该是10+10x=10(1+x);二年后人均住房面积就应该是10(1+x)+10(1+x)x=10(1+x)2解:设
22、每年人均住房面积增长率为x,则:10(1+x)2=14.4(1+x)2=1.44直接开平方,得1+x=1.2即1+x=1.2,1+x=-1.2所以,方程的两根是x1=0.2=20%,x2=-2.2因为每年人均住房面积的增长率应为正的,因此,x2=-2.2应舍去.所以,每年人均住房面积增长率应为20%.(学生小结)老师引导提问:解一元二次方程,它们的共同特点是什么?共同特点:把一个一元二次方程“降次”,转化为两个一元一次方程.我们把这种思想称为“降次转化思想”.三、巩固练习教材第6页练习.四、课堂小结本节课应掌握:由应用直接开平方法解形如x2=p(p0)的方程,那么x=p转化为应用直接开平方法解
23、形如(mx+n)2=p(p0)的方程,那么mx+n=p,达到降次转化之目的.若p<0则方程无解.五、作业布置教材第16页复习巩固1.第2课时配方法的基本形式理解间接即通过变形运用开平方法降次解方程,并能熟练应用它解决一些具体问题.通过复习可直接化成x2=p(p0)或(mx+n)2=p(p0)的一元二次方程的解法,引入不能直接化成上面两种形式的一元二次方程的解题步骤.沪教版七年级数学教案最新例文5配方法的基本形式理解间接即通过变形运用开平方法降次解方程,并能熟练应用它解决一些具体问题.通过复习可直接化成x2=p(p0)或(mx+n)2=p(p0)的一元二次方程的解法,引入不能直接化成上面两
24、种形式的一元二次方程的解题步骤.重点讲清直接降次有困难,如x2+6x-16=0的一元二次方程的解题步骤.难点将不可直接降次解方程化为可直接降次解方程的“化为”的转化方法与技巧.一、复习引入(学生活动)请同学们解下列方程:(1)3x2-1=5(2)4(x-1)2-9=0(3)4x2+16x+16=9(4)4x2+16x=-7老师点评:上面的方程都能化成x2=p或(mx+n)2=p(p0)的形式,那么可得x=p或mx+n=p(p0).如:4x2+16x+16=(2x+4)2,你能把4x2+16x=-7化成(2x+4)2=9吗?二、探索新知列出下面问题的方程并回答:(1)列出的经化简为一般形式的方程
25、与刚才解题的方程有什么不同呢?(2)能否直接用上面前三个方程的解法呢?问题:要使一块矩形场地的长比宽多6 m,并且面积为16 m2,求场地的长和宽各是多少?(1)列出的经化简为一般形式的方程与前面讲的三道题不同之处是:前三个左边是含有x的完全平方式而后二个不具有此特征.(2)不能.既然不能直接降次解方程,那么,我们就应该设法把它转化为可直接降次解方程的方程,下面,我们就来讲如何转化:x2+6x-16=0移项x2+6x=16两边加(6/2)2使左边配成x2+2bx+b2的形式x2+6x+32=16+9左边写成平方形式(x+3)2=25降次x+3=5即x+3=5或x+3=-5解一次方程x1=2,x
26、2=-8可以验证:x1=2,x2=-8都是方程的根,但场地的宽不能是负值,所以场地的宽为2 m,长为8 m.像上面的解题方法,通过配成完全平方形式来解一元二次方程的方法,叫配方法.可以看出,配方法是为了降次,把一个一元二次方程转化为两个一元一次方程来解.例1用配方法解下列关于x的方程:(1)x2-8x+1=0(2)x2-2x-12=0分析:(1)显然方程的左边不是一个完全平方式,因此,要按前面的方法化为完全平方式;(2)同上.解:略.三、巩固练习教材第9页练习1,2.(1)(2).四、课堂小结本节课应掌握:左边不含有x的完全平方形式的一元二次方程化为左边是含有x的完全平方形式,右边是非负数,可以直接降次解方程的方程.五、作业布置沪教版七年级数学教案例文第 14 页 共 14 页