《2022最新沪科版八年级上册数学教案2021最新.doc》由会员分享,可在线阅读,更多相关《2022最新沪科版八年级上册数学教案2021最新.doc(14页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2022最新沪科版八年级上册数学教案2021最新教材的创造性使用。如教材中有的生活场景的选择,问题情境的创设并不是很贴近学生的生活,不能引起学生共鸣,因此,我们在创造性地使用教材的同时可以在反思中加以记录。今天小编在这里整理了一些沪科版八年级上册数学教案2021最新,我们一起来看看吧!沪科版八年级上册数学教案2021最新1教学目标:1、使学生认识比例的“项”以及“内项”和“外项”。2、理解并掌握比例的基本性质,会应用比例的基本性质正确判断两个比能否组成比例。3、通过自主学习,让学生经历探究的过程,体验成功的快乐。教学重点:理解并掌握比例的基本性质。教学难点:引导观察,自主探究发现比例的基本性质
2、设计理念:本课时设计,在“项”以及“内项”和“外项”的认识的设计上,以学生在老师的引导下逐步理解比例的有关知识,是以教师讲授为主。而在本课时第二大块内容,理解并掌握比例的基本性质,本课时设计中,为学生提供开放真实的问题,通过学生自主收集信息,尝试探索规律,引导学生写出不同比例,在此基础上放手让学生在观察中发现、思考,引导学生主动探索比例的基本性质。教学过程:一、从知识的矛盾冲突中导入并引入。3:8=9:( ) 0.5:( )=5:17制造冲突,也为后面的思考题做理论铺垫,顺便起到引入课题,探索性质后回应开头的知识,也起到一定的教育作用。(请勇敢的同学配合老师)师:某某你出生的时间哪一年哪一月哪
3、一日?(根据学生的回报板书两次分子分母上下易位,同为比例的外项)你还想知道教师内谁的生日,请他告诉你.(板书一次,做一个内项,那么括号应该怎样填呢)今天学习了比例的基本性质我们就可以迅速的填出了。(板书:比例的基本性质)二、探索发现新知。1、引用练习中的3:8=9:24为例子,比例中的四个数叫什么名字呢?两端的两项叫做什么,中间的两项叫做什么?(自学课本)学生回报,师完成板书:(注意板书的时候教师的手势要指明确到位)2、练习:请指出下列比例的两个外项和内项各是多少?80:2=200:56:10=9:151/2:1/3=6:40.2:2.5=4:502.4:1.6=60:403、这么多的比例,每
4、个比例的两个外项和两个内项之间存在有什么共同的特点么?可以说的具体一些。带着问题小组内展开讨论。(教师可以参与当中若干组的活动)时间2分钟。4、小组汇报初步形成共识:在比例里,两个外项的积等于两个内项的积,这叫做比例的基本性质。(多找几个小组发表意见)回到板书例题验证:两个外项的积是:324=72两个内项的积是:89=725、拿出自己任意找的5个比例,验证是否存在相同的特点。(请学生在展台展示自己的5个比例,并说明外项和内项的积情况)2明,如果出现不相等的,要观察反例,说明两个比组不成比例。6、完成板书:在比例里,两个外项的积等于两个内项的积如果把比例写成分数的形式呢,以板书的例子,写成分数的
5、形式,引入等号两边的分子和分母交叉相乘,所得的积相等。三、基本练习。1、应用比例的基本性质,判断下面两个比是否能组成比例。(1)6:3和8:5(2)15和0.84(3)1/3:1/4和129(4)1.2:3/和4/5:5(注意学生语言叙述的规范性:如1)两个外项的积是63=18,两个内项的积是38=24,1824,所以不能组成比例)2、在括号里填上适当的数(1)12:3=( ):5(2)( ):1/3=1/4:1/6(3)0.2:0.6=6:( )(4)4:3=80:( )3、用5、3、4、8这四个数组比例,看看你能组几个?为什么?4、把5、3、4、8这四个数换掉其中的一个,组成比例。5、在例
6、一个比中,两个外项的积互为倒数,其中的一个内项是4/5,另一个内项是( )。6、回顾矛盾冲突题目:9解决因为两个外项乘积是1,所以两个外项乘积是1,另一个数就是那个已知数据的倒数。四、全课总结:谈一谈通过这节课的学习你有哪些收获?(质疑,并完成课题总结),提出预习任务,(那么利用比的基本性质如和求比例中的未知数呢,请自觉预习课本35页的例题2和3)沪科版八年级上册数学教案2021最新2教学目标:知识与技能目标:1.掌握矩形的概念、性质和判别条件。2.提高对矩形的性质和判别在实际生活中的应用能力。过程与方法目标:1.经历探索矩形的有关性质和判别条件的过程,在直观操作活动和简单的说理过程中发展学生
7、的合情推理能力,主观探索习惯,逐步掌握说理的基本方法。2.知道解决矩形问题的基本思想是化为三角形问题来解决,渗透转化归思想。情感与态度目标:1.在操作活动过程中,加深对矩形的的认识,并以此激发学生的探索精神。2.通过对矩形的探索学习,体会它的内在美和应用美。教学重点:矩形的性质和常用判别方法的理解和掌握。教学难点:矩形的性质和常用判别方法的综合应用。教学方法:分析启发法教具准备:像框,平行四边形框架教具,多媒体课件。教学过程设计:一、情境导入:演示平行四边形活动框架,引入课题。二、讲授新课:1.归纳矩形的定义:问题:从上面的演示过程可以发现:平行四边形具备什么条件时,就成了矩形?(学生思考、回
8、答。)结论:有一个内角是直角的平行四边形是矩形。2.探究矩形的性质:(1)问题:像框除了“有一个内角是直角”外,还具有哪些一般平行四边形不具备的性质?(学生思考、回答.)结论:矩形的四个角都是直角。(2)探索矩形对角线的性质:让学生进行如下操作后,思考以下问题:(幻灯片展示)在一个平行四边形活动框架上,用两根橡皮筋分别套在相对的两个顶点上,拉动一对不相邻的顶点,改变平行四边形的形状.随着的变化,两条对角线的长度分别是怎样变化的?当是锐角时,两条对角线的长度有什么关系?当是钝角时呢?当是直角时,平行四边形变成矩形,此时两条对角线的长度有什么关系?(学生操作,思考、交流、归纳。)结论:矩形的两条对
9、角线相等.(3)议一议:(展示问题,引导学生讨论解决)矩形是轴对称图形吗?如果是,它有几条对称轴?如果不是,简述你的理由.直角三角形斜边上的中线等于斜边长的一半,你能用矩形的有关性质解释这结论吗?(4)归纳矩形的性质:(引导学生归纳,并体会矩形的“对称美”)矩形的对边平行且相等;矩形的四个角都是直角;矩形的对角线相等且互相平分;矩形是轴对称图形.例解:(性质的运用,渗透矩形对角线的“化归”功能)如图,在矩形ABCD中,两条对角线AC,BD相交于点O,AB=OA=4厘米,求BD与AD的长。(引导学生分析、解答)探索矩形的判别条件:(由修理桌子引出)(5)想一想:(学生讨论、交流、共同学习)对角线
10、相等的平行四边形是怎样的四边形?为什么?结论:对角线相等的平行四边形是矩形.(理由可由师生共同分析,然后用幻灯片展示完整过程.)(6)归纳矩形的判别方法:(引导学生归纳)有一个内角是直角的平行四边形是矩形.对角线相等的平行四边形是矩形.三、课堂练习:(出示P98随堂练习题,学生思考、解答。)四、新课小结:通过本节课的学习,你有什么收获?(师生共同从知识与思想方法两方面小结。)五、作业设计:P99习题4.6第1、2、3题。板书设计:1.矩形矩形的定义:矩形的性质:前面知识的小系统图示:2.矩形的判别条件:例1课后反思:在平行四边形及菱形的教学后。学生已经学会自主探索的方法,自己动手猜想验证一些矩
11、形的特殊性质。一些相关矩形的计算也学会应用转化为直角三角形的方法来解决。总的看来这节课学生掌握的还不错。当然合情推理的能力要慢慢的熟练。不可能一下就掌握熟练。沪科版八年级上册数学教案2021最新3教学目标:情意目标:培养学生团结协作的精神,体验探究成功的乐趣。能力目标:能利用等腰梯形的性质解简单的几何计算、证明题;培养学生探究问题、自主学习的能力。认知目标:了解梯形的概念及其分类;掌握等腰梯形的性质。教学重点、难点重点:等腰梯形性质的探索;难点:梯形中辅助线的添加。教学课件:PowerPoint演示文稿教学方法:启发法、学习方法:讨论法、合作法、练习法教学过程:(一)导入1、出示图片,说出每辆
12、汽车车窗形状(投影)2、板书课题:5梯形3、练习:下列图形中哪些图形是梯形?(投影)4、总结梯形概念:一组对边平行另以组对边不平行的四边形是梯形。5、指出图形中各部位的名称:上底、下底、腰、高、对角线。(投影)6、特殊梯形的.分类:(投影)(二)等腰梯形性质的探究【探究性质一】思考:在等腰梯形中,如果将一腰AB沿AD的方向平移到DE的位置,那么所得的DEC是怎样的三角形?(投影)猜想:由此你能得到等腰梯形的内角有什么样的性质?(学生操作、讨论、作答)如图,等腰梯形ABCD中,ADBC,AB=CD。求证:B=C想一想:等腰梯形ABCD中,A与D是否相等?为什么?等腰梯形性质:等腰梯形的同一条底边
13、上的两个内角相等。【操练】(1)如图,等腰梯形ABCD中,ADBC,AB=CD,B=60o,BC=10cm,AD=4cm,则腰AB=cm。(投影)(2)如图,在等腰梯形ABCD中,ADBC,AB=CD,DEAC,交BC的延长线于点E,CA平分BCD,求证:B=2E.(投影)【探究性质二】如果连接等腰梯形的两条对角线,图中有哪几对全等三角形?哪些线段相等?(学生操作、讨论、作答)如上图,等腰梯形ABCD中,ADBC,AB=CD,AC、BD相交于O,求证:AC=BD。(投影)等腰梯形性质:等腰梯形的两条对角线相等。【探究性质三】问题一:延长等腰梯形的两腰,哪些三角形是轴对称图形?为什么?对称轴呢?
14、(学生操作、作答)问题二:等腰梯是否轴对称图形?为什么?对称轴是什么?(重点讨论)等腰梯形性质:同以底上的两个内角相等,对角线相等(三)质疑反思、小结让学生回顾本课教学内容,并提出尚存问题;学生小结,教师视具体情况给予提示:性质(从边、角、对角线、对称性等角度总结)、解题方法(化梯形问题为三角形及平行四边形问题)、梯形中辅助线的添加方法。沪科版八年级上册数学教案2021最新4教学目标:1、理解运用平方差公式分解因式的方法。2、掌握提公因式法和平方差公式分解因式的综合运用。3、进一步培养学生综合、分析数学问题的能力。教学重点:运用平方差公式分解因式。教学难点:高次指数的转化,提公因式法,平方差公
15、式的灵活运用。教学案例:我们数学组的观课议课主题:1、关注学生的合作交流2、如何使学困生能积极参与课堂交流。在精心备课过程中,我设计了这样的自学提示:1、整式乘法中的平方差公式是_,如何用语言描述?把上述公式反过来就得到_,如何用语言描述?2、下列多项式能用平方差公式分解因式吗?若能,请写出分解过程,若不能,说出为什么?-x2+y2-x2-y24-9x2(x+y)2-(x-y)2a4-b43、试总结运用平方差公式因式分解的条件是什么?4、仿照例4的分析及旁白你能把x3y-xy因式分解吗?5、试总结因式分解的步骤是什么?师巡回指导,生自主探究后交流合作。生交流热情很高,但把全部问题分析完已用了3
16、0分钟。生展示自学成果。生1:-x2+y2能用平方差公式分解,可分解为(y+x)(y-x)生2:-x2+y2=-(x2-y2)=-(x+y)(x-y)师:这两种方法都可以,但第二种方法提出负号后,一定要注意括号里的各项要变号。生3:4-9x2也能用平方差公式分解,可分解为(2+9x)(2-9x)生4:不对,应分解为(2+3x)(2-3x),要运用平方差公式必须化为两个数或整式的平方差的形式。生5:a4-b4可分解为(a2+b2)(a2-b2)生6:不对,a2-b2还能继续分解为a+b)(a-b)师:大家争论的很好,运用平方差公式分解因式,必须化为两个数或两个整式的平方的差的形式,另因式分解必须
17、分解到不能再分解为止。反思:这节课我备课比较认真,自学提示的设计也动了一番脑筋,为让学生顺利得出运用平方差公式因式分解的'条件,我设计了问题2,为让学生能更容易总结因式分解的步骤,我又设计了问题4,自认为,本节课一定会上的非常成功,学生的交流、合作,自学展示一定会很精彩,结果却出乎我的意料,本节课没有按计划完成教学任务,学生练习很少,作业有很大一部分同学不能独立完成,反思这节课主要有以下几个问题:(1)我在备课时,过高估计了学生的能力,问题2中的、多数学生刚预习后不能熟练解答,导致在小组交流时,多数学生都在交流这几题该怎样分解,耽误了宝贵的时间,也分散了学生的注意力,导致难点、重点不突
18、出,若能把问题2改为:下列多项式能用平方差公式因式分解吗?为什么?可能效果会更好。(2)教师备课时,要考虑学生的知识层次,能力水平,真正把学生放在第一位,要考虑学生的接受能力,安排习题要循序渐进,切莫过于心急,过分追求课堂容量、习题类型全等等,例如在问题2的设计时可写一些简单的,像、可到练习时再出现,发现问题后再强调、归纳,效果也可能会更好。我及时调整了自学提示的内容,在另一个班也上了这节课。果然,学生的讨论有了重点,很快(大约10分钟)便合作得出了结论,课堂气氛非常活跃,练习量大,准确率高,但随之我又发现我在处理课后练习时有点不能应对自如。例如:师:下面我们把课后练习做一下,话音刚落,大家纷
19、纷拿着本到我面前批改。师:都完了?生:全完了。我很兴奋。来:“我们再做几题试试。”生又开始紧张地练习下课后,无意间发现竟还有好几个同学课后题没做。原因是预习时不会,上课又没时间,还有几位同学练习题竟然有误,也没改正,原因是上课慌着展示自己,没顾上改。看来,以后上课不能单听学生的齐答,要发挥组长的职责,注重过关落实。给学生一点机动时间,让学习有困难的学生有机会释疑,练习不在于多,要注意融会贯通,会举一反三。确实,“学海无涯,教海无边”。我们备课再认真,预设再周全,面对不同的学生,不同的学情,仍然会产生新的问题,“没有,只有更好!”我会一直探索、努力,不断完善教学设计,更新教育观念,直到永远沪科版
20、八年级上册数学教案2021最新51.内容二次根式的性质。2.内容解析本节教材是在学生学习二次根式概念的基础上,结合二次根式的概念和算术平方根的概念,通过观察、归纳和思考得到二次根式的两个基本性质.对于二次根式的性质,教材没有直接从算术平方根的意义得到,而是考虑学生的年龄特征,先通过 “探究”栏目中给出四个具体问题,让学生学生根据算术平方根的意义,就具体数字进行分析得出结果,再分析这些结果的共同特征,由特殊到一般地归纳出结论.基于以上分析,确定本节课的教学重点为:理解二次根式的性质.二、目标和目标解析1.教学目标(1)经历探索二次根式的性质的过程,并理解其意义;(2)会运用二次根式的性质进行二次
21、根式的化简;(3)了解代数式的概念.2.目标解析(1)学生能根据具体数字分析和算术平方根的意义,由特殊到一般地归纳出二次根式的性质,会用符号表述这一性质;(2)学生能灵活运用二次根式的性质进行二次根式的化简;(3)学生能从已学过的各种式子中,体会其共同特点,得出代数式的概念.三、教学问题诊断分析二次根式的性质是二次根式化简和运算的重要基础.学生根据二次根式的概念和算术平方根的意义,由特殊到一般地得出二次根式的性质后,重在能灵活运用二次根式的性质进行二次根式的化简和解决一些综合性较强的问题.由于学生初次学习二次根式的性质,对二次根式性质的灵活运用存在一定的困难,突破这一难点需要教师精心设计好每一
22、道习题,让学生在练习中进一步掌握二次根式的性质,培养其灵活运用的能力.本节课的教学难点为:二次根式性质的灵活运用.四、教学过程设计1.探究性质1问题1你能解释下列式子的含义吗?, , , .师生活动:教师引导学生说出每一个式子的含义.【设计意图】让学生初步感知,这些式子都表示一个非负数的算术平方根的平方.问题2根据算术平方根的意义填空,并说出得到结论的依据.; ; ; .师生活动学生独立完成填空后,让学生展示其思维过程,说出得到结论的依据.【设计意图】学生通过计算或根据算术平方根的意义得出结论,为归纳二次根式的性质1作铺垫.问题3从以上的结论中你能发现什么规律?你能用一个式子表示这个规律吗?师
23、生活动:引导学生归纳得出二次根式的性质: ( 0).【设计意图】让学生经历从特殊到一般的过程,概括出二次根式的性质1,培养学生抽象概括的能力.例2 计算(1) ;(2) .师生活动:学生独立完成,集体订正.【设计意图】巩固二次根式的性质1,学会灵活运用.2.探究性质2问题4你能解释下列式子的含义吗?, , , .师生活动:教师引导学生说出每一个式子的含义.【设计意图】让学生初步感知,这些式子都表示一个数的平方的算术平方根.问题5根据算术平方根的意义填空,并说出得到结论的依据.= , = , = , = .师生活动学生独立完成填空后,让学生展示其思维过程,说出得到结论的依据.【设计意图】学生通过
24、计算或根据算术平方根的意义得出结论,为归纳二次根式的性质2作铺垫.问题6从以上的结论中你能发现什么规律?你能用一个式子表示这个规律吗?师生活动:引导学生归纳得出二次根式的性质: ( 0)【设计意图】让学生经历从特殊到一般的过程,概括出二次根式的性质2,培养学生抽象概括的能力.例3 计算(1) ;(2) .师生活动:学生独立完成,集体订正.【设计意图】巩固二次根式的性质2,学会灵活运用.3.归纳代数式的概念问题7 回顾我们学过的式子,如 , , , , , , , ( 0),这些式子有哪些共同特征?师生活动:学生概括式子的共同特征,得出代数式的概念.【设计意图】学生通过观察式子的共同特征,形成代
25、数式的概念,培养学生的概括能力.4.综合运用(1)算一算:; ; ; .【设计意图】设计有一定综合性的题目,考查学生的灵活运用的能力,第(2)、(3)、(4)小题要特别注意结果的符号.(2)想一想: 中, 的取值范围是什么?当 0时, 等于多少?当 时, 又等于多少?【设计意图】通过此问题的设计,加深学生对 的理解,开阔学生的视野,训练学生的思维.(3)谈一谈你对 与 的认识.【设计意图】加深学生对二次根式性质的理解.5.总结反思(1)你知道了二次根式的哪些性质?(2)运用二次根式性质进行化简需要注意什么?(3)请谈谈发现二次根式性质的思考过程?(4)想一想,到现在为止,你学习了哪几类字母表示数得到的式子?说说你对代数式的认识.6.布置作业:教科书习题16.1第2,4题.五、目标检测设计1. ; ; .【设计意图】考查对二次根式性质的理解.2.下列运算正确的是()A. B. C. D.【设计意图】考查学生运用二次根式的性质进行化简的能力.3.若 ,则 的取值范围是 .【设计意图】考查学生对一个数非负数的算术平方根的理解.4.计算: .【设计意图】考查二次根式性质的灵活运用.沪科版八年级上册数学教案最新第 14 页 共 14 页