《2022最新初二数学下教案最新模板.doc》由会员分享,可在线阅读,更多相关《2022最新初二数学下教案最新模板.doc(12页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2022最新初二数学下教案最新模板教师要掌握教学计划或教学大纲的总体要求,吃透教材。每门课程都有明确的教学目的,而教学目的是通过每次课的教学任务的完成来实现的。今天小编在这里给大家分享一些有关于初二数学下教案最新模板,希望可以帮助到大家。初二数学下教案最新模板1一、学情分析学生在学习直角三角形全等判定定理“HL”之前,已经掌握了一般三角形全等的判定方法,在本章的前一阶段的学习过程中接触到了证明三角形全等的推论,在本节课要掌握这个定理的证明以及利用这个定理解决相关问题还是一个较高的要求。二、教学任务分析本节课是三角形全等的最后一部分内容,也是很重要的一部分内容,凸显直角三角形的特殊性质。在探索证
2、明直角三角形全等判定定理“HL”的同时,进一步巩固命题的相关知识也是本节课的任务之一。因此本节课的教学目标定位为:1.知识目标:能够证明直角三角形全等的“HL”的判定定理,进一步理解证明的必要性 利用“HL定理解决实际问题2.能力目标:进一步掌握推理证明的方法,发展演绎推理能力三、教学过程分析本节课设计了六个教学环节:第一环节:复习提问;第二环节:引入新课;第三环节:做一做;第四环节:议一议;第五环节:课时小结;第六环节:课后作业。1:复习提问1.判断两个三角形全等的方法有哪几种?2.已知一条边和斜边,求作一个直角三角形。想一想,怎么画?同学们相互交流。3、有两边及其中一边的对角对应相等的两个
3、三角形全等吗?如果其中一个角是直角呢?请证明你的结论。我们曾从折纸的过程中得到启示,作了等腰三角形底边上的中线或顶角的角平分线,运用公理,证明三角形全等,从而得出“等边对等角”。那么我们能否通1 / 5过作等腰三角形底边的高来证明“等边对等角”.要求学生完成,一位学生的过程如下:已知:在ABC中, AB=AC.求证:B=C.证明:过A作ADBC,垂足为C,ADB=ADC=90又AB=AC,AD=AD,ABDACD.B=C(全等三角形的对应角相等)在实际的教学过程中,有学生对上述证明方法产生了质疑。质疑点在于“在证明ABDACD时,用了“两边及其中一边的对角对相等的两个三角形全等”.而我们在前面
4、学习全等的时候知道,两个三角形,如果有两边及其一边的对角相等,这两个三角形是不一定全等的.可以画图说明.(如图所示在ABD和ABC中,AB=AB,B=B,AC=AD,但ABD与ABC不全等)” .也有学生认同上述的证明。教师顺水推舟,询问能否证明:“在两个直角三角形中,直角所对的边即斜边和一条直角边对应相等的两个直角三角形全等.”,从而引入新课。2:引入新课(1).“HL”定理.由师生共析完成已知:在RtABC和RtABC中,C=C=90,AB=AB,BC=BC. 求证:RtABCRtABC证明:在RtABC中,AC=AB一BC(勾股定理).又在Rt A' B' C'中
5、,A' C' =A'C'=A'B'2一B'C'2 (勾股定理).AB=A'B',BC=B'C',AC=A'C'.RtABCRtA'B'C' (SSS).教师用多媒体演示:定理 斜边和一条直角边对应相等的两个直角三角形全等.这一定理可以简单地用“斜边、直角边”或“HL”表示.2 / 522A'B'从而肯定了第一位同学通过作底边的高证明两个三角形全等,从而得到“等边对等角”的证法是正确的.练习:判断下列命题的真假,并说明理由:(1)两个锐角对应相等
6、的两个直角三角形全等;(2)斜边及一锐角对应相等的两个直角三角形全等;(3)两条直角边对应相等的两个直角三角形全等;(4)一条直角边和另一条直角边上的中线对应相等的两个直角三角形全等. 对于(1)、(2)、(3)一般可顺利通过,这里教师将讲解的重心放在了问题(4),学生感觉是真命题,一时有无法直接利用已知的定理支持,教师引导学生证明.已知:RABC和RtA'B ' C',C=C'=90,BC=B'C',BD、B'D'分别是AC、A'C'边上的中线且BDB'D' (如图).求证:RtABCRtA
7、9;B'C'.证明:在RtBDC和RtB'D'C'中,BD=B'D',BC=B'C',RtBDCRtB 'D 'C ' (HL定理).CD=C'D'.又AC=2CD,A 'C '=2C 'D ',AC=A'C'.在RtABC和RtA 'B 'C '中,BC=B'C ',C=C '=90,AC=A'C ',RtABCCORtA'B'C(SAS).通过上述师生共
8、同活动,学生板书推理过程之后可发动学生去纠错,教师最后再总结。3:做一做问题 你能用三角尺平分一个已知角吗? 请同学们用手中的三角尺操作完成,并在小组内交流,用自己的语言清楚表达自己的想法.(设计做一做的目的为了让学生体会数学结论在实际中的应用,教学中就要求学生能用数学的语言清楚地表达自己的想法,并能按要求将推理证明过程写出来。)4:议一议3 / 5BEADCDA'D'BB'初二数学下教案最新模板2一、教学目标:(1)熟练地进行同分母的分式加减法的运算.(2)会把异分母的分式通分,转化成同分母的分式相加减.二、重点、难点1.重点:熟练地进行异分母的分式加减法的运算.2.
9、难点:熟练地进行异分母的分式加减法的运算.3.认知难点与突破方法进行异分母的分式加减法的运算是难点,异分母的分式加减法的运算,必须转化为同分母的分式加减法,然后按同分母的分式加减法的法则计算,转化的关键是通分,通分的关键是正确确定几个分式的最简公分母,确定最简公分母的一般步骤:(1)取各分母系数的最小公倍数;(2)所出现的字母(或含字母的式子)为底的幂的因式都要取;(3)相同字母(或含字母的式子)的幂的因式取指数的.在求出最简公分母后,还要确定分子、分母应乘的因式,这个因式就是最简公分母除以原分母所得的商.异分母的分式加减法的一般步骤:(1)通分,将异分母的分式化成同分母的分式;(2)写成“分
10、母不便,分子相加减”的形式;(3)分子去括号,合并同类项;(4)分子、分母约分,将结果化成最简分式或整式.三、例、习题的意图分析1. P18问题3是一个工程问题,题意比较简单,只是用字母n天来表示甲工程队完成一项工程的时间,乙工程队完成这一项工程的时间可表示为n+3天,两队共同工作一天完成这项工程的 .这样引出分式的加减法的实际背景,问题4的目的与问题3一样,从上面两个问题可知,在讨论实际问题的数量关系时,需要进行分式的加减法运算.2. P19观察是为了让学生回忆分数的加减法法则,类比分数的加减法,分式的加减法的实质与分数的加减法相同,让学生自己说出分式的加减法法则.3.P20例6计算应用分式
11、的加减法法则.第(1)题是同分母的分式减法的运算,第二个分式的分子式个单项式,不涉及到分子变号的问题,比较简单,所以要补充分子是多项式的例题,教师要强调分子相减时第二个多项式注意变号;第(2)题是异分母的分式加法的运算,最简公分母就是两个分母的乘积,没有涉及分母要因式分解的题型.例6的练习的题量明显不足,题型也过于简单,教师应适当补充一些题,以供学生练习,巩固分式的加减法法则.(4)P21例7是一道物理的电路题,学生首先要有并联电路总电阻R与各支路电阻R1, R2, , Rn的关系为 .若知道这个公式,就比较容易地用含有R1的式子表示R2,列出 ,下面的计算就是异分母的分式加法的运算了,得到
12、,再利用倒数的概念得到R的结果.这道题的数学计算并不难,但是物理的知识若不熟悉,就为数学计算设置了难点.鉴于以上分析,教师在讲这道题时要根据学生的物理知识掌握的情况,以及学生的具体掌握异分母的分式加法的运算的情况,可以考虑是否放在例8之后讲.四、课堂堂引入1.出示P18问题3、问题4,教师引导学生列出答案.引语:从上面两个问题可知,在讨论实际问题的数量关系时,需要进行分式的加减法运算.2.下面我们先观察分数的加减法运算,请你说出分数的加减法运算的法则吗?3. 分式的加减法的实质与分数的加减法相同,你能说出分式的加减法法则?4.请同学们说出 的最简公分母是什么?你能说出最简公分母的确定方法吗?五
13、、例题讲解(P20)例6.计算分析 第(1)题是同分母的分式减法的运算,分母不变,只把分子相减,第二个分式的分子式个单项式,不涉及到分子是多项式时,第二个多项式要变号的问题,比较简单;第(2)题是异分母的分式加法的运算,最简公分母就是两个分母的乘积.(补充)例.计算(1)分析 第(1)题是同分母的分式加减法的运算,强调分子为多项式时,应把多项事看作一个整体加上括号参加运算,结果也要约分化成最简分式.解:=(2)分析 第(2)题是异分母的分式加减法的运算,先把分母进行因式分解,再确定最简公分母,进行通分,结果要化为最简分式.解:=六、随堂练习计算(1) (2)(3) (4)七、课后练习计算(1)
14、 (2)(3) (4)八、答案:四.(1) (2) (3) (4)1五.(1) (2) (3)1 (4)初二数学下教案最新模板3一、教学目标:理解分式乘方的运算法则,熟练地进行分式乘方的运算.二、重点、难点1.重点:熟练地进行分式乘方的运算.2.难点:熟练地进行分式乘、除、乘方的混合运算.3.认知难点与突破方法讲解分式乘方的运算法则之前,根据乘方的意义和分式乘法的法则,计算 = = = , = = = ,顺其自然地推导可得:= = = ,即 = . (n为正整数)归纳出分式乘方的法则:分式乘方要把分子、分母分别乘方.三、例、习题的意图分析1. P17例5第(1)题是分式的乘方运算,它与整式的乘
15、方一样应先判断乘方的结果的符号,在分别把分子、分母乘方.第(2)题是分式的乘除与乘方的混合运算,应对学生强调运算顺序:先做乘方,再做乘除.2.教材P17例5中象第(1)题这样的分式的乘方运算只有一题,对于初学者来说,练习的量显然少了些,故教师应作适当的补充练习.同样象第(2)题这样的分式的乘除与乘方的混合运算,也应相应的增加几题为好.分式的乘除与乘方的混合运算是学生学习中重点,也是难点,故补充例题,强调运算顺序,不要盲目地跳步计算,提高正确率,突破这个难点.四、课堂引入计算下列各题:(1) = =( ) (2) = =( )(3) = =( )提问由以上计算的结果你能推出 (n为正整数)的结果
16、吗?五、例题讲解(P17)例5.计算分析第(1)题是分式的乘方运算,它与整式的乘方一样应先判断乘方的结果的符号,再分别把分子、分母乘方.第(2)题是分式的乘除与乘方的混合运算,应对学生强调运算顺序:先做乘方,再做乘除.六、随堂练习1.判断下列各式是否成立,并改正.(1) = (2) =(3) = (4) =2.计算(1) (2) (3)(4) 5)(6)七、课后练习计算(1) (2)(3) (4)八、答案:六、1. (1)不成立, = (2)不成立, =(3)不成立, = (4)不成立, =2. (1) (2) (3) (4)(5) (6)七、(1) (2) (3) (4)初二数学下教案最新模
17、板4一、教学目标:熟练地进行分式乘除法的混合运算.二、重点、难点1.重点:熟练地进行分式乘除法的混合运算.2.难点:熟练地进行分式乘除法的混合运算.3.认知难点与突破方法:紧紧抓住分式乘除法的混合运算先统一成为乘法运算这一点,然后利用上节课分式乘法运算的基础,达到熟练地进行分式乘除法的混合运算的目的.课堂练习以学生自己讨论为主,教师可组织学生对所做的题目作自我评价,关键是点拨运算符号问题、变号法则.三、例、习题的意图分析1. P17页例4是分式乘除法的混合运算. 分式乘除法的混合运算先把除法统一成乘法运算,再把分子、分母中能因式分解的多项式分解因式,最后进行约分,注意最后的结果要是最简分式或整
18、式.教材P17例4只把运算统一乘法,而没有把25x2-9分解因式,就得出了最后的结果,教师在见解是不要跳步太快,以免学习有困难的学生理解不了,造成新的疑点.2, P17页例4中没有涉及到符号问题,可运算符号问题、变号法则是学生学习中重点,也是难点,故补充例题,突破符号问题.四、课堂引入计算(1) (2)五、例题讲解(P17)例4.计算分析 是分式乘除法的混合运算. 分式乘除法的混合运算先统一成为乘法运算,再把分子、分母中能因式分解的多项式分解因式,最后进行约分,注意最后的计算结果要是最简的.(补充)例.计算(1)= (先把除法统一成乘法运算)= (判断运算的符号)= (约分到最简分式)(2)=
19、 (先把除法统一成乘法运算)= (分子、分母中的多项式分解因式)=六、随堂练习计算(1) (2)(3) (4)七、课后练习计算(1) (2)(3) (4)八、答案:六.(1) (2) (3) (4)-y七. (1) (2) (3) (4)初二数学下教案最新模板5一、教学目标:理解分式乘除法的法则,会进行分式乘除运算.二、重点、难点1.重点:会用分式乘除的法则进行运算.2.难点:灵活运用分式乘除的法则进行运算 .3. 难点与突破方法分式的运算以有理数和整式的运算为基础,以因式分解为手段,经过转化后往经过转化后往往可视为整式的运算.分式的乘除的法则和运算顺序可类比分数的有关内容得到.所以,教给学生
20、类比的数学思想方法能较好地实现新知识的转化.只要做到这一点就可充分发挥学生的主体性,使学生主动获取知识.教师要重点处理分式中有别于分数运算的有关内容,使学生规范掌握,特别是运算符号的问题,要抓住出现的问题认真落实.三、例、习题的意图分析1.P13本节的引入还是用问题1求容积的高,问题2求大拖拉机的工作效率是小拖拉机的工作效率的多少倍,这两个引例所得到的容积的高是 ,大拖拉机的工作效率是小拖拉机的工作效率的 倍.引出了分式的乘除法的实际存在的意义,进一步引出P14观察从分数的乘除法引导学生类比出分式的乘除法的法则.但分析题意、列式子时,不易耽误太多时间.2.P14例1应用分式的乘除法法则进行计算
21、,注意计算的结果如能约分,应化简到最简.3.P14例2是较复杂的分式乘除,分式的分子、分母是多项式,应先把多项式分解因式,再进行约分.4.P14例3是应用题,题意也比较容易理解,式子也比较容易列出来,但要注意根据问题的实际意义可知a>1,因此(a-1)2=a2-2a+1四、课堂引入1.出示P13本节的引入的问题1求容积的高 ,问题2求大拖拉机的工作效率是小拖拉机的工作效率的 倍.引入从上面的问题可知,有时需要分式运算的乘除.本节我们就讨论数量关系需要进行分式的乘除运算.我们先从分数的乘除入手,类比出分式的乘除法法则.1. P14观察 从上面的算式可以看到分式的乘除法法则.3.提问 P14
22、思考类比分数的乘除法法则,你能说出分式的乘除法法则?类似分数的乘除法法则得到分式的乘除法法则的结论.五、例题讲解P14例1.分析这道例题就是直接应用分式的乘除法法则进行运算.应该注意的是运算结果应约分到最简,还应注意在计算时跟整式运算一样,先判断运算符号,在计算结果.P15例2.分析 这道例题的分式的分子、分母是多项式,应先把多项式分解因式,再进行约分.结果的分母如果不是单一的多项式,而是多个多项式相乘是不必把它们展开.P15例.分析这道应用题有两问,第一问是:哪一种小麦的单位面积产量?先分别求出“丰收1号”、“丰收2号”小麦试验田的面积,再分别求出“丰收1号”、“丰收2号”小麦试验田的单位面积产量,分别是 、 ,还要判断出以上两个分式的值,哪一个值更大.要根据问题的实际意义可知a>1,因此(a-1)2=a2-2a+1六、随堂练习计算(1) (2) (3)(4)-8xy (5) (6)七、课后练习计算(1) (2) (3)(4) (5) (6)八、答案:六、(1)ab (2) (3) (4)-20x2 (5)(6)七、(1) (2) (3) (4)(5) (6)初二数学下教案模板第 12 页 共 12 页