《2022最新北师大版七年级数学下册教案2021文案.doc》由会员分享,可在线阅读,更多相关《2022最新北师大版七年级数学下册教案2021文案.doc(14页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2022最新北师大版七年级数学下册教案2021文案3|与|-3|;|-3|与0;-2与|+1|;-|+4|与|-3|.(二)引入新课在小学算术中学过了加、减、乘、除四则运算,这些运算是在正有理数和零的范围内的运算.引入负数之后,这些运算法则将是怎样的呢?我们先来学运算.(三)进行新课 (板书课题)例1 如图所示,某人从原点0出发,如果第一次走了5米,第二次接着又走了3米,求两次行走后某人在什么地方?两次行走后距原点0为8米,应该用加法.为区别向东还是向西走,这里规定向东走为正,向西走为负.这两数相加有以下三种情况:1.同号两数相加(1)某人向东走5米,再向东走3米,两次一共走了多少米?这是求两
2、次行走的路程的和.5+3=8用数轴表示如图从数轴上表明,两次行走后在原点0的东边.离开原点的距离是8米.因此两次一共向东走了8米.可见,正数加正数,其和仍是正数,和的绝对值等于这两个加数的绝对值的和.(2)某人向西走5米,再向西走3米,两次一共向东走了多少米?显然,两次一共向西走了8米(-5)+(-3)=-8用数轴表示如图从数轴上表明,两次行走后在原点0的西边,离开原点的距离是8米.因此两次一共向东走了-8米.可见,负数加负数,其和仍是负数,和的绝对值也是等于两个加数的绝对值的和.总之,同号两数相加,取相同的符号,并把绝对值相加.例如,(-4)+(-5),同号两数相加(-4)+(-5)=-(
3、),取相同的符号4+5=9把绝对值相加 (-4)+(-5)=-9.口答练习:(1)举例说明算式7+9的实际意义?(2)(-20)+(-13)=?(3)2.异号两数相加(1)某人向东走5米,再向西走5米,两次一共向东走了多少米?由数轴上表明,两次行走后,又回到了原点,两次一共向东走了0米.5+(-5)=0可知,互为相反数的两个数相加,和为零.(2)某人向东走5米,再向西走3米,两次一共向东走了多少米?由数轴上表明,两次行走后在原点o的东边,离开原点的距离是2米.因此,两次一共向东走了2米.就是 5+(-3)=2.(3)某人向东走3米,再向西走5米,两次一共向东走了多少米?由数轴上表明,两次行走后
4、在原点o的西边,离开原点的距离是2米.因此,两次一共向东走了-2米.就是 3+(-5)=-2.请同学们想一想,异号两数相加的法则是怎么规定的?强调和的符号是如何确定的?和的绝对值如何确定?最后归纳绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0.例如(-8)+5绝对值不相等的异号两数相加8>5(-8)+5=-( )取绝对值较大的加数符号8-5=3 用较大的绝对值减去较小的绝对值(-8)+5=-3.口答练习用算式表示:温度由-4上升7,达到什么温度.(-4)+7=3()3.一个数和零相加(1)某人向东走5米,再向东走0米,两
5、次一共向东走了多少米?显然,5+0=5.结果向东走了5米.(2)某人向西走5米,再向东走0米,两次一共向东走了多少米?容易得出:(-5)+0=-5.结果向东走了-5米,即向西走了5米.请同学们把(1)、(2)画出图来由(1),(2)得出:一个数同0相加,仍得这个数.总结有理数加法的三个法则.学生看书,引导他们看有理数加法运算的三种情况.有理数加法运算的三种情况:特例:两个互为相反数相加;(3)一个数和零相加.每种运算的法则强调:(1)确定和的符号;(2)确定和的绝对值的方法.(四)例题分析例1 计算(-3)+(-9).分析:这是两个负数相加,属于同号两数相加,和的符号与加数相同(应为负),和的
6、绝对值就是把绝对值相加(应为3+9=12)(强调相同、相加的特征).解:(-3)+(-9)=-12.例2分析:这是异号两数相加,和的符号与绝对值较大的加数的符号相同(应为负),和的绝对值等于较大绝对值减去较小绝对值.(强调“两个较大”“一个较小”)解:解题时,先确定和的符号,后计算和的绝对值.(五)巩固练习1.计算(口答)(1)4+9; (2) 4+(-9); (3)-4+9; (4)(-4)+(-9);(5)4+(-4); (6)9+(-2); (7)(-9)+2; (8)-9+0;2.计算(1)5+(-22); (2)(-1.3)+(-8)(3)(-0.9)+1.5; (4)2.7+(-3
7、.5)探究活动题目 (1)在1,2,3,4四个数的前面添加正号或负号,使它们的和为0;(2)在1,2,3,11,12十二个数的前面添加正号或负号,使它们的和为零;(3)在1,2,3,4,99,100一百个数的前面添加正号或负号,使它们的和为0;(4) 在解决这个问题的过程中,你能总结出一些什么数学规律?参考答案 我们不妨不妨以第二问为例探讨,比如,在12,11,10,5这四个数的前面添加负号,则这12个数的和是:-12-11-10+9+8+7+6-5+4+3+2+1=2.现在我们将各数的符号加以调整,考虑到将一个正数变号,其和就要减少这个正数的两倍,因此可得到两个(明显的)解答:(1)得+1变
8、为-1,有-12-11-10+9+8+7+6-5+4+3+2-1=0; (2)将(+6-5)变为-(6-5),有-12-11-10+9+8+7-6+5+4+3+2+1=0.又如,在11,10,8,7,5这五个数的前面添加负号,得12-11-10-9-8-7+6-5+4+3+2+1=-4,我们就有多种调整的方法,如将-8与+6变号,有12-11-10+9+8-7-6-5+4+3+2+1=0. 经过几次试验,我们发现了规律:欲使十二个数的和为零,其中正数的和的绝对值与负数的和的绝对值必须相等.但1+2+3+4+5+6+7+8+9+10+11+12=78因此我们应该使各正数的和的绝对值与各负数的和的
9、绝对值均为为了简便起见,我们把式所表示的一个解答记为(12,11,10,5,1),那么,两式所表示的解答就分别记为(12,11,10,6)与(11,10,7,6,5).同时我们还发现:如果(12,11,10,5,1)是一个解答,那么(9,8,7,6,4,3,2)也必定是一个解答.同样,对应于,两式,还分别有另两个解答:(9,8,7,5,4,3,2,1)与(12,9,8,4,3,2,1).这个规律我们不妨叫做对偶律.此外我们还可发现,由于的三个数12,11,10其和33<39,因此必须再增加一个数6,才有解答(12,11,10,6),也就是说:添加负号的数至少要有四个;反过来,根据对偶律得
10、:添加负号的数最多不超过八个.掌握了上述几条规律,我们就能够在很短的时间内得到许多解答.最后让我们告诉你,第(2)问的解答个数并非无数多,其总数是124个.北师大版七年级数学下册教案2021文案3教学目标:1.知识与技能结合具体实例,进一步认识三角形的概念,掌握三角形三条边的关系.2.过程与方法通过观察、操作、想象、推理、交流等活动,发展空间观念,推理能力和有条理地表达能力.3.情感、态度与价值观联系学生的生活环境、创设情景,帮助学生树立几何知识源于实际、用于实际的观念,激发学生的学习兴趣.教学重点难点:1.重点让学生掌握三角形的概念及三角形的三边关系,并能运用三边关系解决生活中的实际问题.2
11、.难点探究三角形的三边关系应用三边关系解决生活中的实际问题.教学设计:本节课件设计了以下几个环节:回顾与思考、情境引入、三角形的概念、探索三角形三边关系、练习应用、课堂小结、探究拓展思考、布置作业.第一环节 回顾与思考1、如何表示线段、射线和直线?2、如何表示一个角?第二环节 情境引入活动内容:让学生收集生活中有关三角形的图片,课上让学生举例,并观察图片.活动目的:让学生能从生活中抽象出几何图形,感受到我们生活在几何图形的世界之中.培养学生善于观察生活、乐于探索研究的学习品质,从而更大地激发学生学习数学的兴趣第三环节 三角形概念的讲解(1)你能从中找出四个不同的三角形吗?(2)与你的同伴交流各
12、自找到的三角形.(3)这些三角形有什么共同的特点?通过上题的分析引出三角形的概念、三角形的表示方法及三角形的边角的表示方法.并出两道习题加以练习,从练习中归纳出三角形的三要素和注意事项.第四环节 探索三角形三边关系北师大版七年级数学下册教案2021文案4教学目标1.理解掌握法则,会将运算转化为加法运算;2.通过把减法运算转化为加法运算,向学生渗透转化思想,通过运算,培养学生的运算能力.3.通过揭示法则,渗透事物间普遍联系、相互转化的辩证唯物主义思想.教学建议(一) 重点、难点分析本节重点是运用法则熟练进行减法运算。解有理数减法的计算题需严格掌握两个步骤:首先将减法运算转化为加法运算,然后依据有
13、理数加法法则确定所求结果的符号和绝对值.理解法则是难点,突破的关键是转化,变减为加.学习中要注意体会:小学遇到的小数减大数不会减的问题解决了,小数减大数的差是负数,在有理数范围内,减法总可以实施.(二)知识结构(三)教法建议1.教师指导学生阅读教材后强调指出:由于把减数变为它的相反数,从而减法转化为加法.有理数的加法和减法,当引进负数后就可以统一用加法来解决.2.不论减数是正数、负数或是零,都符合有理数减法法则.在使用法则时,注意被减数是永不变的.3. 因为任何减法运算都可以统一成加法运算,所以我们没有必要再规定几个带有减法的运算律,这样有利于知识的巩固和记忆.4.注意引入负数后,小的数减去大
14、的数就可以进行了,其差可用负数表示。教学设计示例一、素质教育目标(一)知识教学点1.理解掌握法则.2.会进行运算.(二)能力训练点1.通过把减法运算转化为加法运算,向学生渗透转化思想.2.通过有理数减法法则的推导,发展学生的逻辑思维能力.3.通过运算,培养学生的运算能力.(三)德育渗透点通过揭示法则,渗透事物间普遍联系、相互转化的辩证唯物主义思想.(四)美育渗透点在小学算术里减法不能永远实施,学习了本节课知道减法在有理数范围内可以永远实施,体现了知识体系的完整美.二、学法引导1.教学方法:教师尽量引导学生分析、归纳总结,以学生为主体,师生共同参与教学活动.2.学生学法:探索新知归纳结论练习巩固
15、.三、重点、难点、疑点及解决办法1.重点:有理数减法法则和运算.2.难点:有理数减法法则的推导.四、课时安排1课时五、教具学具准备电脑、投影仪、自制胶片.六、师生互动活动设计教师提出实际问题,学生积极参与探索新知,教师出示练习题,学生以多种方式讨论解决.七、教学步骤(一)创设情境,引入新课1.计算(口答)(1); (2)-3+(-7);(3)-10+(+3); (4)+10+(-3).2.由实物投影显示课本第42页本章引言中的画面,这是北京冬季里的一天,白天的气温是10,夜晚的最低气温是-5.这一天的气温比最低气温高多少?教师引导学生观察:生:10比-5高15.师:能不能列出算式计算呢?生:1
16、0-(-5).师:如何计算呢?教师总结:这就是我们今天要学的内容.(引入新课,板书课题)【教法说明】1题既复习巩固有理数加法法则,同时为进行有理数减法运算打基础.2题是一个具体实例,教师创设问题情境,激发学生的认知兴趣,把具体实例抽象成数学问题,从而点明本节课课题.(二)探索新知,讲授新课1.师:大家知道10-3=7.谁能把10-3=7这个式子中的性质符号补出来呢?生:(+10)-(+3)=+7.师:计算:(+10)+(-3)得多少呢?生:(+10)+(-3)=+7.师:让学生观察两式结果,由此得到(+10)-(+3)=+10)+(-3). (1)师:通过上述题,同学们观察减法是否可以转化为加
17、法计算呢?生:可以.师:是如何转化的呢?生:减去一个正数(+3),等于加上它的相反数(-3).【教法说明】教师发挥主导作用,注重学生的参与意识,充分发展学生的思维能力,让学生通过尝试,自己认识减法可以转化为加法计算.2.再看一题,计算(-10)-(-3).教师启发:要解决这个问题,根据有理数减法的意义,这就是要求一个数使它与(-3)相加会得到-10,那么这个数是谁呢?生:-7即:(-7)+(-3)=-10,所以(-10)-(-3)=-7.教师给另外一个问题:计算(-10)+(+3).生:(-10)+(+3)=-7.教师引导、学生观察上述两题结果,由此得到:(-10)-(-3)=(-10)+(+
18、3). (2)教师进一步引导学生观察(2)式;你能得到什么结论呢?生:减去一个负数(-3)等于加上它的相反数(+3).教师总结:由(1)、(2)两式可以看出减法运算可以转化成加法运算.【教法说明】由于学生刚刚接触有理数减法运算难度较大,为面向全体,通过第二个题给予学生进一步观察比较的机会,学生自己总结、归纳、思考,此时学生的思维活跃,易于充分发挥学生的学习主动性,同时也培养了学生分析问题的能力,达到能力培养的目标.师:通过以上两个题目,请同学们想一想两个有理数相减的法则是什么?学生活动:同学们思考,并要求同桌同学相到叙述,互相纠正补充,然后举手回答,其他同学思考准备更正或补充.师:出示有理数减
19、法法则:减去一个数,等于加上这个数的相反数.(板书)教师强调法则:(1)减法转化为加法,减数要变成相反数.(2)法则适用于任何两有理数相减.(3)用字母表示一般形式为:.【教法说明】结合引入新课中温度计的实例,进一步验证了法则的合理性,同时向学生指出了有理数减法的实际意义.从而使学生体会到数学来源于实际,又服务于实际.4.例题讲解:出示投影1 (例题1、2)例1 计算(1)(-3)-(-5); (2)0-7;例2 计算(1)7.2-(-4.8); (2)()-.例1是由学生口述解题过程,教师板书,强调解题的规范性,然后师生共同总结解题步骤:(1)转化,(2)进行加法运算.例2两题由两个学生板演
20、,其他学生做在练习本上,然后师生讲评.【教法说明】学生口述解题过程,教师板书做示范,从中培养学生严谨的学风和良好的学习习惯.例1(2)题是0减去一个数,学生在开始学时很容易出错,这里作为例题是为引起学生的重视.例2两题是简单的变式题目,意在说明有理数减法法则不但适用于整数,也适用于分数、小数,即有理数.师:组织学生自己编题,学生回答.【教法说明】教师与学生以平等身份参与教学,放手让学生自己编拟有理数减法的题目,其目的是让学生巩固怕学知识.这样做,一方面可以活跃学生的思维,培养学生的表达能力.另一方面通过出题,相互解答,互相纠正,能增强学生学习的主动性和参与意识.同时,教师可以获取学生掌握知识的
21、反馈信息,对于存在的问题及时回授.(三)尝试反馈,巩固练习师:下面大家一起看一组题.出示投影2 (计算题1、2)1.计算(口答)(1)6-9; (2)(+4)-(-7); (3)(-5)-(-8);(4)(-4)-9 (5)0-(-5); (6)0-5.2.计算(1)(-2.5)-5.9; (2)1.9-(-0.6);(3)()-; (4)-().学生活动:1题找学生口答,2题找四个学生板演,其他同学做在练习本上.【教法说明】学生对有理数减法法则已经熟悉,学生在做练习时,要引导学生注意归纳有理数减法规律,而不要只是简单机械地将减法化成加法,为以后逐步省略化成加法的中间步骤做准备.用实物投影显示
22、课本第45页的画面.3.世界峰是珠穆朗玛峰,海拔高度是8848米,陆上最低处是位于亚洲西部的死海湖,湖面海拔高度是-392米,两处高度相差多少?生答:8848-(-392)=8848+392=9240.所以两地高度相差9240米.【教法说明】此题是实际问题,与新课引入中的实际问题前后呼应,贯彻教学大纲中规定的“要使学生受到把实际问题抽象成教学问题的训练,逐步形成用数学意识”的要求,把实际问题转化为有理数减法,说明数学来源于实际,又用于实际.(四)课堂小结提问:通过本节课学习你学到了什么?生答:略.师:有理数减法法则是一个转化法则,要求同学们掌握并能应用其计算.对于小学不能解决的2-5这类不够减
23、的问题就不成问题了.也就是说,在有理数范围内,减法总可能实施.八、随堂练习1.填空题(1)3-(-3)=_; (2)(-11)-2=_;(3)0-(-6)=_; (4)(-7)-(+8)=_;(5)-12-(-5)=_; (6)3比5大_;(7)-8比-2小_; (8)-4-( )=10;(9)如果,则的符号是_;(10)用算式表示:珠穆朗玛峰的海拔高度是8848米,吐鲁番盆地的海拔高度是-155米,两处高度相差多少米_.2.判断题(1)两数相减,差一定小于被减数.( )(2)(-2)-(+3)=2+(-3).( )(3)零减去一个数等于这个数的相反数.( )(4)方程在有理数范围内无解.(
24、)(5)若,.( )九、布置作业(一)必做题:课本第83页中2.偶数题,3.偶数题,4.偶数题.(二)选做题:课本第84页中5、8.十、板书设计随堂练习答案.1.(1)6; (2)-13; (3)6; (4)-15;(5)-7; (6)-2; (7)6; (8)-4;(9)+; (10)8848-(-155).2. 作业 答案(一)必做题:2.(2)102;(4)-68;(6)-210;(8)923.(2)-0.6;(4)0.2;(6)-1.5;(8)9.114.(2);(4);(6);(8)(二)选做题:5.(1)-9;(2)-5;(3)1;(4)12;(5)-2.28;(6)8.(1)4;
25、(2)5;(3)7;(4)5北师大版七年级数学下册教案2021文案5教学目标1.了解代数和的概念,理解有理数加减法可以互相转化,会进行加减混合运算;2. 通过学习一切加减法运算,都可以统一成加法运算,继续渗透数学的转化思想;3.通过加法运算练习,培养学生的运算能力。教学建议(一)重点、难点分析本节课的重点是依据运算法则和运算律准确迅速地进行,难点是省略加号与括号的代数和的计算.由于减法运算可以转化为加法运算,所以加减混合运算实际上就是有理数的加法运算。了解运算符号和性质符号之间的关系,把任何一个含有有理数加、减混合运算的算式都看成和式,这是因为有理数加、减混合算式都看成和式,就可灵活运用加法运
26、算律,简化计算.(二)知识结构(三)教法建议1.通过习题,复习、巩固有理数的加、减运算以及加减混合运算的法则与技能,讲课前教师要认真总结、分析学生在进行有理数加、减混合运算时常犯的错误,以便在这节课分析习题时,有意识地帮助学生改正.2.关于“去括号法则”,只要学生了解,并不要求追究所以然.3.任意含加法、减法的算式,都可把运算符号理解为数的性质符号,看成省略加号的和式。这时,称这个和式为代数和。再例如-3-4表示-3、-4两数的代数和,-4+3表示-4、+3两数的代数和,3+4表示3和+4的代数和等。代数和概念是掌握有理数运算的一个重要概念,请老师务必给予充分注意。4.先把正数与负数分别相加,可以使运算简便。5.在交换加数的位置时,要连同前面的符号一起交换。如12-5+7 应变成 12+7-5,而不能变成12-7+5。北师大版七年级数学下册教案文案第 14 页 共 14 页