2022最新初中数学圆的知识点总结归纳.doc

上传人:be****23 文档编号:18290818 上传时间:2022-05-30 格式:DOC 页数:9 大小:19KB
返回 下载 相关 举报
2022最新初中数学圆的知识点总结归纳.doc_第1页
第1页 / 共9页
2022最新初中数学圆的知识点总结归纳.doc_第2页
第2页 / 共9页
点击查看更多>>
资源描述

《2022最新初中数学圆的知识点总结归纳.doc》由会员分享,可在线阅读,更多相关《2022最新初中数学圆的知识点总结归纳.doc(9页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2022最新初中数学圆的知识点总结归纳初中数学知识是需要总结和归纳的,不然知识就会零零散散,而圆又是我们学习初中数学中重要的知识点,那你知道圆的知识点哪些吗?下面是小编为大家整理的关于初中数学圆的知识点总结,希望对您有所帮助!初中数学圆知识点总结一、圆及圆的相关量的定义1.平面上到定点的距离等于定长的所有点组成的图形叫做圆。定点称为圆心,定长称为半径。2.圆上任意两点间的部分叫做圆弧,简称弧。大于半圆的弧称为优弧,小于半圆的弧称为劣弧。连接圆上任意两点的线段叫做弦。经过圆心的弦叫做直径。3.顶点在圆心上的角叫做圆心角。顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。4.过三角形的三

2、个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心。5.直线与圆有3种位置关系:无公共点为相离;有2个公共点为相交;圆与直线有唯一公共点为相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点。6.两圆之间有5种位置关系:无公共点的,一圆在另一圆之外叫外离,在之内叫内含;有唯一公共点的,一圆在另一圆之外叫外切,在之内叫内切;有2个公共点的叫相交。两圆圆心之间的距离叫做圆心距。7.在圆上,由2条半径和一段弧围成的图形叫做扇形。圆锥侧面展开图是一个扇形。这个扇形的半径成为圆锥的母线。二、有关圆的基本性质与定理1.点P与圆O的位置关系(设

3、P是一点,则PO是点到圆心的距离):P在O外,PO>r;P在O上,PO=r;P在O内,PO<r< p=;>2.圆是轴对称图形,其对称轴是任意一条过圆心的直线。圆也是中心对称图形,其对称中心是圆心。3.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧。4.在同圆或等圆中,如果2个圆心角,2个圆周角,2条弧,2条弦中有一组量相等,那么他们所对应的其余各组量都分别相等。5.一条弧所对的圆周角等于它所对的圆心角的一半。6.直径所对的圆周角是直角。90度的圆周角所对的弦是直径。7.不在同一直线上的3个点确定一个圆

4、。8.一个三角形有唯一确定的外接圆和内切圆。外接圆圆心是三角形各边垂直平分线的交点,到三角形3个顶点距离相等;内切圆的圆心是三角形各内角平分线的交点,到三角形3边距离相等。9.直线AB与圆O的位置关系(设OPAB于P,则PO是AB到圆心的距离):AB与O相离,PO>r;AB与O相切,PO=r;AB与O相交,PO。10.圆的切线垂直于过切点的直径;经过直径的一端,并且垂直于这条直径的直线,是这个圆的切线。11.圆与圆的位置关系(设两圆的半径分别为R和r,且Rr,圆心距为P):外离P>R+r;外切P=R+r;相交R-r。三、圆的方程1.圆的标准方程在平面直角坐标系中,以点O(a,b)为

5、圆心,以r为半径的圆的标准方程是:(x-a)2+(y-b)2=r22.圆的一般方程把圆的标准方程展开,移项,合并同类项后,可得圆的一般方程是:x2+y2+Dx+Ey+F=0和标准方程对比,其实D=-2a,E=-2b,F=a2+b2。相关知识:圆的离心率e=0.在圆上任意一点的曲率半径都是r。四、圆的定理1.垂径定理:垂直于弦的直径平分这条弦并且平分弦所对的两条弧。推论1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;弦的垂直平分线经过圆心,并且平分弦所对的两条弧;平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧。推论2:圆的两条平行弦所夹的弧相等。2.推论1同弧或等弧

6、所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。3.推论2半圆(或直径)所对的圆周角是直角;90的圆周角所对的弦是直径。4.定理:任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆。5.定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角。初中数学圆的知识点归纳总结一、圆的定义。1、以定点为圆心,定长为半径的点组成的图形。2、在同一平面内,到一个定点的距离都相等的点组成的图形。二、圆的各元素。1、半径:圆上一点与圆心的连线段。2、直径:连接圆上两点有经过圆心的线段。3、弦:连接圆上两点线段(直径也是弦)。4、弧:圆上两点之间的曲线部分。半圆周也是弧。(1)劣弧:小于

7、半圆周的弧。(2)优弧:大于半圆周的弧。5、圆心角:以圆心为顶点,半径为角的边。6、圆周角:顶点在圆周上,圆周角的两边是弦。7、弦心距:圆心到弦的垂线段的长。三、圆的基本性质。1、圆的对称性。(1)圆是轴对称图形,它的对称轴是直径所在的直线。(2)圆是中心对称图形,它的对称中心是圆心。(3)圆是旋转对称图形。2、垂径定理。(1)垂直于弦的直径平分这条弦,且平分这条弦所对的两条弧。(2)推论:平分弦(非直径)的直径,垂直于弦且平分弦所对的两条弧。平分弧的直径,垂直平分弧所对的弦。3、圆心角的度数等于它所对弧的度数。圆周角的度数等于它所对弧度数的一半。(1)同弧所对的圆周角相等。(2)直径所对的圆

8、周角是直角;圆周角为直角,它所对的弦是直径。4、在同圆或等圆中,两条弦、两条弧、两个圆周角、两个圆心角、两条弦心距五对量中只要有一对量相等,其余四对量也分别相等。5、夹在平行线间的两条弧相等。6、设O的半径为r,OP=d。7、(1)过两点的圆的圆心一定在两点间连线段的中垂线上。(2)不在同一直线上的三点确定一个圆,圆心是三边中垂线的交点,它到三个点的距离相等。(直角三角形的外心就是斜边的中点。)8、直线与圆的位置关系。d表示圆心到直线的距离,r表示圆的半径。直线与圆有两个交点,直线与圆相交;直线与圆只有一个交点,直线与圆相切;直线与圆没有交点,直线与圆相离。9、平面直角坐标系中,A(x1,y1

9、)、B(x2,y2)。则AB=(x1+x2,y1+y2)10、圆的切线判定。(1)d=r时,直线是圆的切线。切点不明确:画垂直,证半径。(2)经过半径的'外端且与半径垂直的直线是圆的切线。切点明确:连半径,证垂直。11、圆的切线的性质(补充)。(1)经过切点的直径一定垂直于切线。(2)经过切点并且垂直于这条切线的直线一定经过圆心。12、切线长定理。(1)切线长:从圆外一点引圆的两条切线,切点与这点之间连线段的长叫这个点到圆的切线长。(2)切线长定理。PA、PB切O于点A、BPA=PB,1=2。13、内切圆及有关计算。(1)三角形内切圆的圆心是三个内角平分线的交点,它到三边的距离相等。(

10、2)如图,ABC中,AB=5,BC=6,AC=7,O切ABC三边于点D、E、F。求:AD、BE、CF的长。分析:设AD=x,则AD=AF=x,BD=BE=5-x,CE=CF=7-x.可得方程:5-x+7-x=6,解得x=3(3)ABC中,C=90,AC=b,BC=a,AB=c。求内切圆的半径r。分析:先证得正方形ODCE,得CD=CE=rAD=AF=b-r,BE=BF=a-rb-r+a-r=c得r=(b+a-c)/2(4)SABC=abc/4r14、(补充)(1)弦切角:角的顶点在圆周上,角的一边是圆的切线,另一边是圆的弦。如图,BC切O于点B,AB为弦,ABC叫弦切角,ABC=D。(2)相交

11、弦定理。圆的两条弦AB与CD相交于点P,则PAPB=PCPD。(3)切割线定理。如图,PA切O于点A,PBC是O的割线,则PA2=PBPC。(4)推论:如图,PAB、PCD是O的割线,则PAPB=PCPD。15、圆与圆的位置关系。(1)外离:d>r1+r2,交点有0个;外切:d=r1+r2,交点有1个;相交:r1-r2内切:d=r1-r2,交点有1个;内含:0d(2)性质。相交两圆的连心线垂直平分公共弦。相切两圆的连心线必经过切点。16、圆中有关量的计算。(1)弧长有L表示,圆心角用n表示,圆的半径用R表示。L=n(圆心角)x(圆周率)xr(半径)/180(2)扇形的面积用S表示。S=l

12、r/2(3)圆锥的侧面展开图是扇形。r为底面圆的半径,a为母线长。扇形的圆心角=l/rS侧=arS全=ar+r2圆的知识点总结1.不在同一直线上的三点确定一个圆。2.垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧推论1 平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧弦的垂直平分线经过圆心,并且平分弦所对的两条弧平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧推论2 圆的两条平行弦所夹的弧相等3.圆是以圆心为对称中心的中心对称图形4.圆是定点的距离等于定长的点的集合5.圆的内部可以看作是圆心的距离小于半径的点的集合6.圆的外部可以看作是圆心的距离大于半径的点的集

13、合7.同圆或等圆的半径相等8.到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆9.定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦 相等,所对的弦的弦心距相等10.推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两 弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等。11定理 圆的内接四边形的对角互补,并且任何一个外角都等于它 的内对角12.直线L和O相交 d直线L和O相切 d=r直线L和O相离 d>r13.切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线14.切线的性质定理 圆的切线垂直于经过切点的半径15.推论1 经过圆心且垂直于切线

14、的直线必经过切点16.推论2 经过切点且垂直于切线的直线必经过圆心17.切线长定理 从圆外一点引圆的两条切线,它们的切线长相等, 圆心和这一点的连线平分两条切线的夹角18.圆的外切四边形的两组对边的和相等 外角等于内对角19.如果两个圆相切,那么切点一定在连心线上20.两圆外离 d>R+r 两圆外切 d=R+r.两圆相交 R-rr).两圆内切 d=R-r(R>r) 两圆内含dr)21.定理 相交两圆的连心线垂直平分两圆的公共弦22.定理 把圆分成n(n3):依次连结各分点所得的多边形是这个圆的内接正n边形经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形23

15、.定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆24.正n边形的每个内角都等于(n-2)180/n25.定理 正n边形的半径和边心距把正n边形分成2n个全等的直角三角形26.正n边形的面积Sn=pnrn/2 p表示正n边形的周长27.正三角形面积3a/4 a表示边长28.如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360,因此k(n-2)180/n=360化为(n-2)(k-2)=429.弧长计算公式:L=n兀R/18030.扇形面积公式:S扇形=n兀R2/360=LR/231.内公切线长= d-(R-r) 外公切线长= d-(R+r)32.定理 一条弧所对的圆周角等于它所对的圆心角的一半33.推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等34.推论2 半圆(或直径)所对的圆周角是直角;90的圆周角所 对的弦是直径35.弧长公式 l=a_r a是圆心角的弧度数r >0 扇形面积公式 s=1/2_l_r初中数学圆的知识点总结第 9 页 共 9 页

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 工作报告

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁