《2022最新2021人教版七年级下册数学教案文案.doc》由会员分享,可在线阅读,更多相关《2022最新2021人教版七年级下册数学教案文案.doc(5页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2022最新2021人教版七年级下册数学教案文案a|例如,上面的问题中|20|=20,|-10|=10显然,|0|=0 这个例子中,第一问是相反意义的量,用正负数表示,后一问的解答则与符号没有关系,说明实际生活中有些问题,人们只需知道它们的具体数值,而并不关注它们所表示的意义.为引入绝对值概念做准备.并使学生体验数学知识与生活实际的联系.因为绝对值概念的几何意义是数形转化的典型模型,学生初次接触较难接受,所以配置此观察与思考,为建立绝对值概念作准备.合作交流探究规律 例1求下列各数的绝对值,并归纳求有理数a的绝对有什么规律?、-3,5,0,+58,0.6要求小组讨论,合作学习.教师引导学生利用
2、绝对值的意义先求出答案,然后观察原数与它的绝对值这两个数据的特征,并结合相反数的意义,最后总结得出求绝对值法则(见教科书第15页).巩固练习:教科书第15页练习.其中第1题按法则直接写出答案,是求绝对值的基本训练;第2题是对相反数和绝对值概念进行辨别,对学生的分析、判断能力有较高要求,要注意思考的周密性,要让学生体会出不同说法之间的区别. 求一个数的绝时值的法则,可看做是绝对值概念的一个应用,所以安排此例.学生能做的尽量让学生完成,教师在教学过程中只是组织者.本着这个理念,设计这个讨论.结合实际发现新知 引导学生看教科书第16页的图,并回答相关问题:把14个气温从低到高排列;把这14个数用数轴
3、上的点表示出来;观察并思考:观察这些点在数轴上的位置,并思考它们与温度的高低之间的关系,由此你觉得两个有理数可以比较大小吗?应怎样比较两个数的大小呢?学生交流后,教师总结:14个数从左到右的顺序就是温度从低到高的顺序:在数轴上表示有理数,它们从左到右的顺序就是从小到大的顺序,即左边的数小于右边的数.在上面14个数中,选两个数比较,再选两个数试试,通过比较,归纳得出有理数大小比较法则想象练习:想象头脑中有一条数轴,其上有两个点,分别表示数一100和一90,体会这两个点到原点的距离(即它们的绝对值)以及这两个数的大小之间的关系.要求学生在头脑中有清晰的图形. 让学生体会到数学的规定都来源于生活,每
4、一种规定都有它的合理性数在大小比较法则第2点学生较难掌握,要从绝对值的意义和数轴上的数左小右大这方面结合起来来了解,所以配置想象练习 ,加强数与形的想象。课堂练习 例2,比较下列各数的大小(教科书第17页例)比较大小的过程要紧扣法则进行,注意书写格式练习:第18页练习小结与作业课堂小结 怎样求一个数的绝对值,怎样比较有理数的大小?本课作业 1, 必做题:教产书第19页习题1,2,第4,5,6,102, 选做题:教师自行安排本课教育评注(课堂设计理念,实际教学效果及改进设想)1,情景的创设出于如下考虑:体现数学知识与生活实际的紧密联系,让学生在这些熟悉的日常生活情境中获得数学体验,不仅加深对绝对
5、值的理解,更感受到学习绝对值概念的必要性和激发学习的兴趣.教材中数的绝对值概念是根据几何意义来定义的(其本质是将数转化为形来解释,是难点),然后通过练习归纳出求有理数的绝对值的规律,如果直接给出绝对值的概念,灌输知识的味道很浓,且太抽象,学生不易接受.2, 一个数绝对值的法则,实际上是绝对值概念的直接应用,也体现着分类的数学思想,所以直接通过例1归纳得出,显得非常紧凑,是教学重点;从知识的发展和学生的能力培养角度来看,教师应更重视学生的自主学习和探究的过程,关注学生的思维,做好教学的组织和引导,留给学生足够的空间。3, 有理数大小的比较法则是大小规定的直接归纳,其中第(2)条学生较难理解,教学
6、中要结合绝对值的意义和规定:“在数轴上表示有理数,它们从左到右的顺序就是从小到大的顺序”,帮助学生建立“数轴上越左边的点到原点的距离越大,所以表示的数越小”这个数形结合的模型.为此设置了想象练习.4,本节课的内容包括绝对值的概念和数的绝对值的求法、有理数大小比较的法则,教学内容很多,学生接受起来可能会有困难,建议把有理数的大小比较移到下节课教学。2021人教版七年级下册数学教案文案5教学目的1.理解用一元一次方程解工程问题的本质规律;通过对“工程问题”的分析进一步培养学生用代数方法解决实际问题的能力。2.理解和掌握基本的数学知识、技能、数学思想方法,获得广泛的数学活动经验,提高解决问题的能力。
7、重点、难点重点:工程中的工作量、工作的效率和工作时间的关系。难点:把全部工作量看作“1”。教学过程一、复习提问1.一件工作,如果甲单独做2小时完成,那么甲独做I小时完成全部工作量的多少?2.一件工作,如果甲单独做。小时完成,那么甲独做1小时,完成全部工作量的多少?3.工作量、工作效率、工作时间之间有怎样的关系?二、新授阅读教科书第18页中的问题6。分析:1.这是一个关于工程问题的实际问题,在这个问题中,已经知道了什么? 已知:制作一块广告牌,师傅单独完成需4天,徒弟单独做要6天。2.怎样用列方程解决这个问题?本题中的等量关系是什么?等量关系是:师傅做的工作量+徒弟做的工作量=1)先要求出师傅与
8、徒弟各完成的工作量是多少?两人的工效已知,因此要先求他们各自所做的天数,因此,设师傅做了x天,则徒弟做(x+1)天,根据等量关系列方程。 解方程得 x=2师傅完成的工作量为= ,徒弟完成的工作量为=所以他们两人完成的工作量相同,因此每人各得225元。三、巩固练习一件工作,甲独做需30小时完成,由甲、乙合做需24小时完成,现由甲独做10小时;请你提出问题,并加以解答。例如 (1)剩下的乙独做要几小时完成?(2)剩下的由甲、乙合作,还需多少小时完成?(3)乙又独做5小时,然后甲、乙合做,还需多少小时完成?四、小结1.本节课主要分析了工作问题中工作量、工作效率和工作时间之间的关系,即 工作量=工作效率工作时间工作效率= 工作时间=2.解题时要全面审题,寻找全部工作,单独完成工作量和合作完成工作量的一个等量关系列方程。五、作业教科书习题6.3.3第1、2题。人教版七年级下册数学教案文案第 5 页 共 5 页