2022最新2021七年级上册数学公开课教案模板.doc

上传人:be****23 文档编号:18253765 上传时间:2022-05-30 格式:DOC 页数:10 大小:19KB
返回 下载 相关 举报
2022最新2021七年级上册数学公开课教案模板.doc_第1页
第1页 / 共10页
2022最新2021七年级上册数学公开课教案模板.doc_第2页
第2页 / 共10页
点击查看更多>>
资源描述

《2022最新2021七年级上册数学公开课教案模板.doc》由会员分享,可在线阅读,更多相关《2022最新2021七年级上册数学公开课教案模板.doc(10页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2022最新2021七年级上册数学公开课教案模板a|例如,上面的问题中|20|=20,|-10|=10显然,|0|=0 这个例子中,第一问是相反意义的量,用正负数表示,后一问的解答则与符号没有关系,说明实际生活中有些问题,人们只需知道它们的具体数值,而并不关注它们所表示的意义.为引入绝对值概念做准备.并使学生体验数学知识与生活实际的联系.因为绝对值概念的几何意义是数形转化的典型模型,学生初次接触较难接受,所以配置此观察与思考,为建立绝对值概念作准备.合作交流探究规律 例1求下列各数的绝对值,并归纳求有理数a的绝对有什么规律?、-3,5,0,+58,0.6要求小组讨论,合作学习.教师引导学生利用

2、绝对值的意义先求出答案,然后观察原数与它的绝对值这两个数据的特征,并结合相反数的意义,最后总结得出求绝对值法则(见教科书第15页).巩固练习:教科书第15页练习.其中第1题按法则直接写出答案,是求绝对值的基本训练;第2题是对相反数和绝对值概念进行辨别,对学生的分析、判断能力有较高要求,要注意思考的周密性,要让学生体会出不同说法之间的区别. 求一个数的绝时值的法则,可看做是绝对值概念的一个应用,所以安排此例.学生能做的尽量让学生完成,教师在教学过程中只是组织者.本着这个理念,设计这个讨论.结合实际发现新知 引导学生看教科书第16页的图,并回答相关问题:把14个气温从低到高排列;把这14个数用数轴

3、上的点表示出来;观察并思考:观察这些点在数轴上的位置,并思考它们与温度的高低之间的关系,由此你觉得两个有理数可以比较大小吗?应怎样比较两个数的大小呢?学生交流后,教师总结:14个数从左到右的顺序就是温度从低到高的顺序:在数轴上表示有理数,它们从左到右的顺序就是从小到大的顺序,即左边的数小于右边的数.在上面14个数中,选两个数比较,再选两个数试试,通过比较,归纳得出有理数大小比较法则想象练习:想象头脑中有一条数轴,其上有两个点,分别表示数一100和一90,体会这两个点到原点的距离(即它们的绝对值)以及这两个数的大小之间的关系.要求学生在头脑中有清晰的图形. 让学生体会到数学的规定都来源于生活,每

4、一种规定都有它的合理性数在大小比较法则第2点学生较难掌握,要从绝对值的意义和数轴上的数左小右大这方面结合起来来了解,所以配置想象练习 ,加强数与形的想象。课堂练习 例2,比较下列各数的大小(教科书第17页例)比较大小的过程要紧扣法则进行,注意书写格式练习:第18页练习小结与作业课堂小结 怎样求一个数的绝对值,怎样比较有理数的大小?本课作业;1, 必做题:教产书第19页习题1,2,第4,5,6,102, 选做题:教师自行安排本课教育评注(课堂设计理念,实际教学效果及改进设想)1,情景的创设出于如下考虑:体现数学知识与生活实际的紧密联系,让学生在这些熟悉的日常生活情境中获得数学体验,不仅加深对绝对

5、值的理解,更感受到学习绝对值概念的必要性和激发学习的兴趣.教材中数的绝对值概念是根据几何意义来定义的(其本质是将数转化为形来解释,是难点),然后通过练习归纳出求有理数的绝对值的规律,如果直接给出绝对值的概念,灌输知识的味道很浓,且太抽象,学生不易接受.2, 一个数绝对值的法则,实际上是绝对值概念的直接应用,也体现着分类的数学思想,所以直接通过例1归纳得出,显得非常紧凑,是教学重点;从知识的发展和学生的能力培养角度来看,教师应更重视学生的自主学习和探究的过程,关注学生的思维,做好教学的组织和引导,留给学生足够的空间。3, 有理数大小的比较法则是大小规定的直接归纳,其中第(2)条学生较难理解,教学

6、中要结合绝对值的意义和规定:“在数轴上表示有理数,它们从左到右的顺序就是从小到大的顺序”,帮助学生建立“数轴上越左边的点到原点的距离越大,所以表示的数越小”这个数形结合的模型.为此设置了想象练习.4,本节课的内容包括绝对值的概念和数的绝对值的求法、有理数大小比较的法则,教学内容很多,学生接受起来可能会有困难,建议把有理数的大小比较移到下节课教学。2021七年级上册数学公开课教案模板3教学目标1.使学生正确理解数轴的意义,掌握数轴的三要素;2.使学生学会由数轴上的已知点说出它所表示的数,能将有理数用数轴上的点表示出来;3.使学生初步理解数形结合的思想方法.教学重点和难点重点:初步理解数形结合的思

7、想方法,正确掌握数轴画法和用数轴上的点表示有理数.难点:正确理解有理数与数轴上点的对应关系.课堂教学过程 设计一、从学生原有认知结构提出问题1.小学里曾用“射线”上的点来表示数,你能在射线上表示出1和2吗?2.用“射线”能不能表示有理数?为什么?3.你认为把“射线”做怎样的改动,才能用来表示有理数呢?待学生回答后,教师指出,这就是我们本节课所要学习的内容数轴.二、讲授新课让学生观察挂图放大的温度计,同时教师给予语言指导:利用温度计可以测量温度,在温度计上有刻度,刻度上标有读数,根据温度计的液面的不同位置就可以读出不同的数,从而得到所测的温度.在0上10个刻度,表示10;在0下5个刻度,表示-5

8、.与温度计类似,我们也可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零.具体方法如下(边说边画):1.画一条水平的直线,在这条直线上任取一点作为原点(通常取适中的位置,如果所需的都是正数,也可偏向左边)用这点表示0(相当于温度计上的0);2.规定直线上从原点向右为正方向(箭头所指的方向),那么从原点向左为负方向(相当于温度计上0以上为正,0以下为负);3.选取适当的长度作为单位长度,在直线上,从原点向右,每隔一个长度单位取一点,依次表示为1,2,3,从原点向左,每隔一个长度单位取一点,依次表示为-1,-2,-3,提问:我们能不能用这条直线表示任何有理数?(可列举几个数)在此基

9、础上,给出数轴的定义,即规定了原点、正方向和单位长度的直线叫做数轴.进而提问学生:在数轴上,已知一点P表示数-5,如果数轴上的原点不选在原来位置,而改选在另一位置,那么P对应的数是否还是-5?如果单位长度改变呢?如果直线的正方向改变呢?通过上述提问,向学生指出:数轴的三要素原点、正方向和单位长度,缺一不可.三、运用举例 变式练习例1 画一个数轴,并在数轴上画出表示下列各数的点:例2 指出数轴上A,B,C,D,E各点分别表示什么数.课堂练习示出来.2.说出下面数轴上A,B,C,D,O,M各点表示什么数?最后引导学生得出结论:正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,零用原点表示

10、.四、小结指导学生阅读教材后指出:数轴是非常重要的数学工具,它使数和直线上的点建立了对应关系,它揭示了数和形之间的内在联系,为我们研究问题提供了新的方法.本节课要求同学们能掌握数轴的三要素,正确地画出数轴,在此还要提醒同学们,所有的有理数都可用数轴上的点来表示,但是反过来不成立,即数轴上的点并不是都表示有理数,至于数轴上的哪些点不能表示有理数,这个问题以后再研究.五、作业1.在下面数轴上:(1)分别指出表示-2,3,-4,0,1各数的点.(2)A,H,D,E,O各点分别表示什么数?2.在下面数轴上,A,B,C,D各点分别表示什么数?3.下列各小题先分别画出数轴,然后在数轴上画出表示大括号内的一

11、组数的点:(1)-5,2,-1,-3,0; (2)-4,2.5,-1.5,3.5;课堂教学设计说明从学生已有知识、经验出发研究新问题,是我们组织教学的一个重要原则.小学里曾学过利用射线上的点来表示数,为此我们可引导学生思考:把射线怎样做些改进就可以用来表示有理数?伴以温度计为模型,引出数轴的概念.教学中,数轴的三要素中的每一要素都要认真分析它的作用,使学生从直观认识上升到理性认识.直线、数轴都是非常抽象的数学概念,当然对初学者不宜讲的过多,但适当引导学生进行抽象的思维活动还是可行的.例如,向学生提问:在数轴上对应一亿万分之一的点,你能画出来吗?它是不是存在等.2021七年级上册数学公开课教案模

12、板4教学目的1.理解用一元一次方程解工程问题的本质规律;通过对“工程问题”的分析进一步培养学生用代数方法解决实际问题的能力。2.理解和掌握基本的数学知识、技能、数学思想方法,获得广泛的数学活动经验,提高解决问题的能力。重点、难点重点:工程中的工作量、工作的效率和工作时间的关系。难点:把全部工作量看作“1”。教学过程一、复习提问1.一件工作,如果甲单独做2小时完成,那么甲独做I小时完成全部工作量的多少?2.一件工作,如果甲单独做。小时完成,那么甲独做1小时,完成全部工作量的多少?3.工作量、工作效率、工作时间之间有怎样的关系?二、新授阅读教科书第18页中的问题6。分析:1.这是一个关于工程问题的

13、实际问题,在这个问题中,已经知道了什么? 已知:制作一块广告牌,师傅单独完成需4天,徒弟单独做要6天。2.怎样用列方程解决这个问题?本题中的等量关系是什么?等量关系是:师傅做的工作量+徒弟做的工作量=1)先要求出师傅与徒弟各完成的工作量是多少?两人的工效已知,因此要先求他们各自所做的天数,因此,设师傅做了x天,则徒弟做(x+1)天,根据等量关系列方程。 解方程得 x=2师傅完成的工作量为= ,徒弟完成的工作量为=所以他们两人完成的工作量相同,因此每人各得225元。三、巩固练习一件工作,甲独做需30小时完成,由甲、乙合做需24小时完成,现由甲独做10小时;请你提出问题,并加以解答。例如 (1)剩

14、下的乙独做要几小时完成?(2)剩下的由甲、乙合作,还需多少小时完成?(3)乙又独做5小时,然后甲、乙合做,还需多少小时完成?四、小结1.本节课主要分析了工作问题中工作量、工作效率和工作时间之间的关系,即 工作量=工作效率工作时间工作效率= 工作时间=2.解题时要全面审题,寻找全部工作,单独完成工作量和合作完成工作量的一个等量关系列方程。五、作业教科书习题6.3.3第1、2题。2021七年级上册数学公开课教案模板5教学目的借助“线段图”分析复杂的行程问题中的数量关系,从而建立方程解决实际问题,发展分析问题,解决问题的能力,进一步体会方程模型的作用。重点、难点1.重点:列一元一次方程解决有关行程问

15、题。2.难点:间接设未知数。教学过程一、复习1.列一元一次方程解应用题的一般步骤和方法是什么?2.行程问题中的基本数量关系是什么?路程=速度时间 速度=路程 / 时间二、新授例1.小张和父亲预定搭乘家门口的公共汽车赶往火车站,去家乡看望爷爷,在行驶了三分之一路程后,估计继续乘公共汽车将会在火车开车后半小时到达火车站,随即下车改乘出租车,车速提高了一倍,结果赶在火车开车前15分钟到达火车站,已知公共汽车的平均速度是40千米/时,问小张家到火车站有多远?画“线段图”分析, 若直接设元,设小张家到火车站的路程为x千米。1.坐公共汽车行了多少路程?乘的士行了多少路程?2.乘公共汽车用了多少时间,乘出租

16、车用了多少时间?3.如果都乘公共汽车到火车站要多少时间?4,等量关系是什么?如果设乘公共汽车行了x千米,则出租车行驶了2x千米。小张家到火车站的路程为3x千米,那么也可列出方程。可设公共汽车从小张家到火车站要x小时。设未知数的方法不同,所列方程的复杂程度一般也不同,因此在设未知数时要有所选择。三、巩固练习教科书第17页练习1、2。四、小结有关行程问题的应用题常见的一个数量关系:路程=速度时间,以及由此导出的其他关系。如何选择设未知数使方程较为简单呢?关键是找出较简捷地反映题目全部含义的等量关系,根据这个等量关系确定怎样设未知数。四、作业教科书习题6.3.2,第1至5题。七年级上册数学公开课教案模板第 10 页 共 10 页

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 工作报告

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁