《(共76套313页)浙教版七年级数学上册(全册)同步练习 课时作业汇总(打包下载).pdf》由会员分享,可在线阅读,更多相关《(共76套313页)浙教版七年级数学上册(全册)同步练习 课时作业汇总(打包下载).pdf(327页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、(共(共 7676 套套 313313 页)浙教版七年级数学上册(全册)页)浙教版七年级数学上册(全册)同步练习同步练习 课时作业汇总课时作业汇总1 11 1从自然数到有理数从自然数到有理数第1 1课时从自然数到分数知识点 1自然数的意义1小亮在看报纸时,收集到下列信息,你认为其中没有用到自然数标号或排序的是()A某地的国民生产总值列全国第五位B某城市有 16 条公共汽车线路C小刚乘 T32 次火车去旅游D小风在校运动会上获得跳远比赛第一名2小明体重 45 千克, 其中数“45”属于_(计数和测量; 标号或排序 在横线上填序号即可)3下面关于河姆渡遗址的描述用了很多自然数,说说它们哪些表示计数
2、和测量,哪些表示标号或排序河姆渡遗址, 位于宁波城西北 25 千米处的余姚河姆渡镇.1973 年发现, 遗址总面积为 4万平方米,堆积厚度为 4 米,由相互叠压的4 个文化层组成经两期考古发掘,共出土文物7000 余件,早期文化遗存距今已有6900 多年的历史知识点 2分数的意义114把化为小数是_,把 0.6化为分数是_55高铁 G7302 次列车从杭州到嘉兴历时 36 分钟,如果改用小时作单位,应表示为_小时6林林手中有 22 元钱,买文具用了 2.5 元,买水果用了 3 元,在回家路上遇到爷爷,爷爷给了他 15 元钱,现在他手中共有多少钱?7科学研究表明,植物的花瓣、花萼、果实的数目以及
3、其他方面的特征,都非常吻合于一个奇特的数列著名的斐波那契数列:1,1,2,3,5,8,13,21,仔细观察该数列,它的第 10 个数应该是_8某商店销售某种商品,因到了旺季,价格上调10%,旺季过后又下调10%,则价格下调后的商品比调价前是贵了,还是便宜了?9 “假日旅行社”推出“西湖风景区一日游”的两种价格方案(如图 111)(1)10 名成人,5 名儿童,怎样购票合算?(2)5 名成人,10 名儿童,怎样购票合算?图 1111B解析 B 中的数据是自然数的计数结果23解:计数和测量:25 千米,4 万平方米,4 米,4 个,7000 余件,6900 多年标号或排序:1973 年242.23
4、3365.解析 时、 分、 秒之间是 60 进制, 1 小时60 分钟, 所以 36 分钟应该是小时,5603即 小时56解析 原有 22 元钱,买了文具、水果,后来爷爷给了他15 元,其中减少部分为买文具和水果的钱,增加部分为爷爷给他的钱,减少部分应相减,增加部分应相加解:222.531531.5(元)7 55解析 第 1 个数加第2 个数等于第3 个数, 第 2 个数加第3 个数等于第4 个数,依次类推,第 10 个数等于第 8 个数加第 9 个数8解:(110%)(110%)110%90%99%,所以价格下调后的商品比调价前便宜了9解:(1)方案一:1501060515003001800
5、(元);方案二:100(105)100151500(元);方案三:可以让 10 名成人购买团体票,5 名儿童购买儿童票,1001060510003001300(元)因为 130015001800,所以 10 名成人购买团体票,5 名儿童购买儿童票最合算(2)方案一:150560107506001350(元);方案二:100(105)100151500(元);方案三:可以让 5 名成人购买团体票,10 名儿童购买儿童票,100560105006001100(元)因为 110013501500,所以 5 名成人购买团体票,10 名儿童购买儿童票最合算1 11 1从自然数到有理数从自然数到有理数第2
6、 2课时有理数知识点 1具有相反意义的量12017长沙在下列选项中,具有相反意义的量是()A收入 20 元和支出 30 元B上升了 6 米和后退了 7 米C卖出该 10 千克米和盈利 10 元D向东行 30 米和向北行 30 米2某地某天中午的气温是8 ,记做8 ,晚上的气温是零下 2 ,则该地这天晚上的气温可记做()A2 B1 C2 D1 3 2016广州中国人很早就开始使用负数, 中国古代数学著作 九章算术 的“方程”一章,在世界数学史上首次正式引入负数, 如果收入 100 元记做100 元,那么80 元表示()A支出 20 元 B收入 20 元C支出 80 元 D收入 80 元知识点 2
7、有理数的分类4四个数3.14,0,1,2 中,为负数的是()A3.14 B0 C1 D25下列说法正确的是()A整数包括正整数和负整数B分数包括正分数和负分数C正有理数和负有理数组成全体有理数D0 既是正整数也是负整数116把下列各数填入相应的横线内:5, ,0.4,8.6,1000,3.14,1 ,0,236,103.正整数:_;负分数:_;正有理数:_;负有理数:_.7某品牌味精的包装袋上标有“质量:50020 g” ,抽检了四袋味精,其中不合格的是()A510 g B499 g C479 g D518 g8 2017聊城纽约、 悉尼与北京的时差如下表(正数表示同一时刻比北京时间早的时数,
8、负数表示同一时刻比北京时间晚的时数):城市悉尼纽约时差/时213当北京 6 月 15 日 23 时,悉尼、纽约的时间分别是()A6 月 16 日 1 时;6 月 15 日 10 时B6 月 16 日 1 时;6 月 14 日 10 时C6 月 15 日 21 时;6 月 15 日 10 时D6 月 15 日 21 时;6 月 16 日 12 时9体育课上,全班男同学进行了单杠引体向上的测验,以能做8 次为标准,超过的次数用正数表示,不足的次数用负数表示,该班男生的成绩如下表:成绩人数2413033425341542则该班男生的达标率为_10将一串有理数按下列规律排列,回答下列问题:图 112(
9、1)在 A 处的数是正数还是负数?(2)负数排在 A,B,C,D 中的什么位置?(3)第 2018 个数是正数还是负数?排在对应于A,B,C,D 中的什么位置?1A2.C3.C4.A5.B6解:正整数:5,103;1负分数: ,0.4,3.14;21正有理数:5,8.6,1 ,103;31负有理数: ,0.4,1000,3.14,6.27C8A960%10解:(1)在A处的数是正数(2)B和D的位置是负数(3)第 2018 个数是正数,排在对应于C的位置1 12 2数轴数轴知识点 1数轴的定义和在数轴上表示数1如图 121 所示,所画数轴正确的是()图 1212. 以下四个数分别是图122 所
10、示数轴上A,B,C,D四个点所表示的数,其中错误的是()图 12221A. 3.5 B. 1 C. 0 D. 1333指出数轴上的点A,B,C,D,E分别表示什么数图 1234在数轴上表示下列各数:112,4 ,1.5,3 ,1.6,0,2.22知识点 2相反数的意义52017温州6 的相反数是()A6 B1 C0 D66A,B是数轴上的两点,A,B两点可能互为相反数的是()图 1247一个数的相反数是它本身,这个数是_8数轴上表示互为相反数的两个点的距离为10,则这两个数分别是_9在数轴上表示下列各数及它们的相反数:13 ,3,0,1.5.210在数轴上,原点及原点右边的点表示的数是()A正
11、数 B整数C非负数 D非正数11 数轴上A,B两点所表示的数如图125所示, 则A与B之间表示整数的点有()图 125A5 个 B6 个 C7 个 D8 个12下面说法正确的有()的相反数是3.14;符号相反的数互为相反数;(3.8)的相反数是 3.8;一个数和它的相反数不可能相等;正数与负数互为相反数A0 个 B1 个 C2 个 D3 个13 2017义乌四校月考数轴上到表示2的点的距离是3的点所表示的数是_14邮递员骑车从邮局出发,先向西骑行 2 km 到达A村,继续向西骑行 3 km 到达B村,然后向东骑行 9 km 到达C村,最后回到邮局(1)以邮局为原点,向东骑行为正方向,用1 个单
12、位长度表示 1 km,画出数轴,并在该数轴上表示A,B,C三个村庄的位置;(2)C村离A村有多远?(3)邮递员一共骑行了多少千米?1C2.B3解:A:1;B:2;C:1;D:3.5;E:2.4解析 先画出数轴,然后根据数的正、负及它们到原点的距离标出各点,一般在相应位置加小黑点,以便显示清楚解:画出数轴,如图所示5A6.B7.08.5 和5119解:3 的相反数是3 ,3 的相反数是 3,0 的相反数是 0,1.5 的相反数是 1.5.22在数轴上表示为:10C11A12A解析 本题考查相反数的概念 是无限不循环小数,与 3.14 不相等,所以 的相反数不是3.14, 而是 ; 符号相反的两个
13、数不一定是相反数, 如2 与4;(3.8)3.8,所以它的相反数是3.8;当这个数是 0 时,这个数和它的相反数相等;正数和负数可以表示具有相反意义的量,但不一定互为相反数131 或5解析 数轴上到表示2 的点的距离是 3 的点有 2 个,在2 左边的点所表示的数是5,在2 右边的点所表示的数是 1.所以答案为 1 或5.14 解:(1)画图如下(2)C村离A村 936(km)(3)邮递员一共骑行了 239418(km)1 13 3绝对值绝对值知识点 1绝对值的意义1(1)数轴上表示 2 的点到原点的距离是_,所以|2|_;(2)数轴上表示2 的点到原点的距离是_,所以|2|_;(3)数轴上表
14、示 0 的点到原点的距离是_,所以|0|_122017黄冈等于()311A3 B3 C. D333绝对值为 5 的有理数是()A5 B10 C5 D54绝对值等于本身的数是_;绝对值最小的有理数是_5分别写出下列各数的绝对值:311 ,6.3,32,12,3 .5236画一条数轴,在数轴上分别标出绝对值是0,4, 的数2知识点 2绝对值的计算7若|a2|0,则a_8计算:141(1);(2)|49| ;732(3)|3|1|3|.9绝对值相等的两个数在数轴上对应的两点之间的距离为4,则这两个数分别是_10下列说法正确的是_(填序号)|a|一定是负数;两个数只有相等时,它们的绝对值才相等;若|a
15、|b|,则a与b互为相反数;有理数的绝对值不小于0.11正式比赛时乒乓球的尺寸有严格的规定 现有四个乒乓球,超过规定的尺寸记为正数,不足规定的尺寸记为负数,为选用一个乒乓球进行比赛,裁判对四个乒乓球进行测量,得到结果:A 球0.2 mm,B 球0.1 mm,C 球0.3 mm,D 球0.2 mm.你认为应选哪个乒乓球用于比赛?为什么?12已知|a|2,b的相反数为5,试求a(b)13 一个数在数轴上对应的点到原点的距离是这个数的绝对值, 如数轴上表示 3 的点到原点的距离为|3|,数轴上表示3 的点到原点的距离为|3|;数轴上表示x的点到原点的距离为|x|,则|x3|表示的意义是数轴上表示x的
16、点与表示 3 的点之间的距离(1)|x2|的意义是_;(2)若数轴上表示x的点与表示 8 的点之间的距离是4,则x为 _1(1)22(2)22(3)002.C3.A4非负数(或 0 和正数)0335解:11 ,55|6.3|6.3,|32|32,|12|12,3131.226略7.28解析 先根据绝对值的意义去掉绝对值符号,再计算415解:(1)原式 .3261(2)原式49 7.7(3)原式3135.9 2 和21011解:应选B 球用于比赛,因为根据绝对值的意义,绝对值越小,说明它与规定的尺寸偏差越小,所以选绝对值最小的B 球12解:根据题意,得a2 或a2,b5,当a2,b5 时,原式2
17、57;当a2,b5 时,原式253.13 (1)数轴上表示x的点与表示 2 的点之间的距离(2)4 或 121.41.4有理数的大小比较有理数的大小比较知识点 1利用数轴比较有理数的大小1. 如图 141,数轴上有A,B,C,D四个点,其中所对应的数最小的点是()图 141A点A B点BC点C D点D2 有理数a,b,c在数轴上所对应的点的位置如图142, 则下列关系正确的是(图 142Aca0b Bab0cCb0ac Db0ca3在数轴上表示下列各数,并比较大小2,34,0,12,1.5.知识点 2利用法则比较有理数的大小4用“”或“”连接14比较a与a的大小1A2.C313. 解:画数轴略
18、,1.5 0 2.424(1)(3)5D6.A7.A8解:(1)1100.4(2) 0.3552544242524(3) , ,66305530303054 .655(4) 0.625,0.6250.618,850.6250.618,即 0.618.89 A10 B11213.14 解:当a0 时,aa;当a0 时,aa;当a0 时,a”或“0,b0,那么ab_0;(2)如果a0,b0,b|b|,那么ab_0;(4)如果a0,|a|b|,那么ab_0.5在数轴上表示下列有理数的运算,并求出结果(1)(3)5;(2)(4)(3)6计算:(1)(3)(5);(2)(6)(16);22(3)( )
19、; (4)0(0.8);3311(5)(2.7)(6.7); (6)( )( )2372016萧山区月考我们已经知道,有理数的加法运算法则可以归纳为:同号两数相加;异号两数相加;与零相加共三种类型,请根据加法运算的三种类型,各写出一个算式,使两个数的和是3.5.知识点 2有理数加法的简单应用8A为数轴上表示1 的点,将点A沿数轴向右移动 2 个单位长度后到点B,则点B所表示的数为()A3 B3C1 D1 或39收入 8 元,又支出 5 元,可用算式表示为()A(8)(5) B(8)(5)C(8)(5) D(8)(5)10某市某天早晨 6 点的气温是1 ,到了中午气温比早晨 6 点时上升了 8
20、,这时该市的气温是_.11. 列式计算:(1)比18 大30 的数;(2)75 的相反数与24 的和12. 已知 A 地的海拔为53 米,而 B 地比 A 地高 30 米,求 B 地的海拔是多少13绝对值大于 1 且小于 4 的所有整数和是()A6B6C0D414如果两个有理数的和是负数,那么这两个数()A都是负数B一个为零,一个为负数C一正一负,且负数的绝对值较大D以上三种情况都有可能15某天股票 A 的开盘价为 18 元,上午 11:30 跌了 1.5 元,下午收盘时又涨了 0.3元,则股票 A 这天的收盘价为()A0.3 元 B16.2 元 C16.8 元 D18 元116. 在 0,2
21、,1, 这四个数中,最大数与最小数的和是_217. 已知|a|8,|b|2.(1)当 a,b 同号时,求 ab 的值;(2)当 a,b 异号时,求 ab 的值18按下列要求分别写出一个含有两个加数的算式:(1)两个加数都是负数,和是13;(2)至少一个加数是正整数,和是13.19. 下表是某水位站记录的潮汛期某河流一周内的水位变化情况(单位:m.“”号表示水位比前一天上升, “”号表示水位比前一天下降,上周日的水位恰好达到警戒水位,警戒水位是 0m)星期一0.20星期二0.81星期三星期四星期五0.28星期六0.36星期日0.010.350.13回答下列问题:(1)本周哪一天河流水位最高, 哪
22、一天河流水位最低, 它们位于警戒水位之上还是之下,与警戒水位的距离分别是多少?(2)与上周日相比,本周日河流的水位是上升了还是下降了?1(1)(2)5(3)1(4)12B解析 220,故选 B.34(1)(2)(3)(4)5解:在数轴上表示略. (1)(3)52.(2)(4)(3)7.6(1)8(2)10(3)05(4)0.8(5)4(6)67解:答案不唯一如(2)(1.5)3.5;(7)3.53.5;0(3.5)3.5.8C9.B10.711解:(1)18(30)48,比18 大30 的数是48.(2)由题意得75(24)99,75 的相反数与24 的和为99.12解:533023.答:B
23、地的海拔是23 米13C解析 绝对值大于 1 且小于 4 的所有整数是:2,3,2,3,共有4 个,这4 个数的和是 0.14 D15 C解析 18(1.5)(0.3)16.8(元)16 1.17 解:(1)|a|8,|b|2,且a,b同号,a8,b2 或a8,b2,则ab10 或ab10.(2)|a|8,|b|2,且a,b异号,a8,b2 或a8,b2,则ab6或ab6.18解:答案不唯一,如:(1)(1)(12)13.(2)1(14)13.19解:(1)星期一的水位是 0.20 m;星期二的水位是 0.200.811.01(m);星期三的水位是 1.01(0.35)0.66(m);星期四的
24、水位是 0.660.130.79(m);星期五的水位是 0.790.281.07(m);星期六的水位是 1.07(0.36)0.71(m);星期日的水位是 0.71(0.01)0.7(m)则星期五河流水位最高, 星期一河流水位最低,均高于警戒水位,与警戒水位的距离分别是 1.07 m,0.20 m.(2)与上周日相比,本周日河流的水位上升了2 21 1有理数的加法有理数的加法第2 2课时有理数的加法运算律知识点运用加法运算律简算51511小磊解题时,将式子(7) (4)先变成(7)(4)6666再计算结果,则小磊运用了()A加法交换律B加法交换律和加法结合律C加法结合律D无法判断2. 下列变形
25、,运用加法运算律正确的是()A3(2)23B4(6)3(6)43C5(2)45(4)21515D. (1)(1)6666123下面运用加法运算律计算6(18)4(6.8)18(3.2),最恰33当的是()12A.6418(18)(6.8)(3.2)3312B.6(6.8)4(18)18(3.2)3312C.6(18)4(6.8)18(3.2)3312D.64(18)18(3.2)(6.8)334(1)3(2)_3,即ab_;(2)(5)(31)(31)(5)(31)_,即(ab)c_5 计算(1.387)(3.617)(2.387)时, 应先把_和_这两个数相加较为简便6计算(13)12(13
26、)(12)的结果是_7用适当的方法计算下列各题:(1)12(18)4;1137 (2)82;2(3)8(6)5(8);(4)(2.4)4.56(5.6)(4.56);3121(5)( )( )( )(1 )75752318计算: 10.25.343某同学的答案如下:231解: 10.253431110.25123150.251251 441.以上解法是否简便?如果不简便,应如何改进?9. 有一架直升机从海拔 2500 米的高原上起飞,第一次上升了2100 米,第二次上升了1200 米,第三次上升了1700 米,求此时这架飞机离海平面多少米10绝对值小于 5 的所有整数的和是()A15 B10
27、C0 D10133511计算:(1)1.7563 12 ;28481141(2)3(2.16)8 3 (3.84)(0.25) .485812小虫从某点 O 出发,在一条直线上来回爬行,假定向右爬行的路程记为正数,向左爬行的路程记为负数,爬过的各段路程依次为(单位:厘米):5,3,10,8,6,12,10.(1)小虫最后是否回到出发点O?(2)小虫离开出发点 O 最远是多少厘米?(3)在小虫爬行过程中,若它每爬行1 厘米奖励它 1 粒芝麻,则小虫一共得到多少粒芝麻?13阅读下题的计算方法:52319计算:5 17432.635231解:原式(5)(9)(17)(3)63425231(5)(9)
28、(17)(3)6342101411 .4上面这种方法叫拆项法仿照上述方法计算:5212018 (2017 )4037(1 )6321B2B3D4(1)2ba(2)(31)a(bc)51.3872.3876.07解:(1)12(18)4124(18)16(18)2.11(2)原式378484.22(3)原式8(8)(6)5651.(4)( 2.4) 4.56 ( 5.6) ( 4.56) (2.4)(5.6)4.56(4.56)808.321181(5)原式( )( )( )(1 )(1) .7755778解:不简便不应该从左到右依次计算,而应该运用加法的交换律和结合律简化计算,即213原式10
29、.25334211.9解:25002100(1200)(1700)(25002100)(12001700)4600(2900)1700(米)答:此时这架飞机离海平面1700 米10C.3513353111解:(1)1.7563 12 1.7516(3 2 )0882848421166 .22411411(2)原式3 32.16(3.84)8 0(6)8 58844542 .512解:(1)(5)(3)(10)(8)(6)(12)(10)0,所以小虫最后回到出发点O.(2)小虫距O点距离依次为 5,|(5)(3)|2,|210|12,|12(8)|4,|4(6)|2,|(2)12|10,|101
30、0|0,所以小虫离开出发点O最远是 12 厘米(3)|5|3|10|8|6|12|10|54(厘米),故小虫一共得到 54 粒芝麻5213 解 : 原 式 (2018)( ) ( 2017) ( ) 4037 63(1)(1)2521(2018)(2017)4037(1)( )( )( )6321(2)1.2.22.2有理数的减法有理数的减法第1 1课时有理数的减法知识点 1有理数减法法则的运用1在下列括号内填上适当的数(1)(7)(3)(7)_;(2)(5)4(5)_;(3)0(2.5)0_22017西湖期中计算23 的结果是()A1 B0 C1 D53在(5)()7 中的括号里应填()A1
31、2 B2 C2 D124计算:3(1)(5)(3); (2)0( );411(3)( )( );63(4)(18.5)(18.5)5计算:(1)(5)(1)(6);(2)11(9)(3);(3)6(5)9.知识点 2有理数减法的简单应用6 湖州冬季里某一天最高气温是7 , 最低气温是1 , 这一天湖州的温差是(A8 B6 C7 D8 7比2018 小 1 的数是()A2017 B2017C2019 D20198从1 中依次减去1712,8,所得的差是_9列式计算:)11(1)4 与3 的差的相反数;24(2)一个加数是7,和是11,则另一个加数是多少?10甲地的海拔是 40 m,乙地的海拔是3
32、0 m,丙地比甲地低 50 m,请问:(1)丙地的海拔是多少?(2)哪个地方的海拔最高?(3)哪个地方的海拔最低?(4)最高的比最低的高多少?11下列说法正确的是()A两个数之差一定小于被减数B减去一个负数,差一定大于被减数C减去一个正数,差一定大于被减数D0 减去任何数,差都是负数122017赤峰|(3)5|等于()A8 B2 C2 D813计算:(1)|4|7|;(2)|3|(3)2;(3)|2|(2.5)|14|.144,5,7 这三个数的和比这三个数绝对值的和小多少?152017萧山期末点A,B在数轴上分别表示有理数a,b,A,B两点之间的距离表示为AB,在数轴上A,B两点之间的距离A
33、B|ab|.回答下列问题:(1)数轴上表示 2 和 5 的两点之间的距离是_,数轴上表示 2 和3 的两点之间的距离是_;(2)数轴上表示x和2 的两点之间的距离为_;(3)若x表示一个有理数,且4x2,则|x2|x4|_;(4)若|x3|x5|8,求出x的整数值1(1)34(2)(4)9(3)2.52.52A3B解析 括号里的数(5)(7)572.314(1)8(2)(3)(4)37465解:(1)原式(6)(6)(6)60.(2)原式20(3)17.(3)原式1910.6D解析 由题意得 7(1)718()故选 D.7C117178解析 根据题意,可列式子为:11 124128128171
34、231.1282424111319解:(1)4 (3 )(4 3 )7 .42442(2)11(7)1174.10解:(1)405010(m)答:丙地的海拔是10 m.(2)甲地的海拔是 40 m,乙地的海拔是30 m,丙地的海拔是10 m,且 401030,甲地海拔最高(3)甲地的海拔是 40 m,乙地的海拔是30 m,丙地的海拔是10 m,且301040,乙地的海拔最低(4)40(30)70(m)答:最高的比最低的高 70 m.11 B解析 A 两个数的差不一定小于被减数, 如 3(1)43, 故本选项错误;B减去一个负数,差一定大于被减数,如3(1)43,故本选项正确;C减去一个正数,差
35、一定小于被减数,如6336,故本选项错误;D0 减去负数,差是正数,如0(1)1,故本选项错误12D解析 |(3)5|8|8,故选 D.13解:(1)原式473.(2)原式3(3)233(2)2.(3)原式2(2.5)322.531.5.14解:45(7)6,|4|5|7|16,16(6)16622,所以4,5,7 这三个数的和比这三个数绝对值的和小22.15解:(1)数轴上表示 2 和 5 的两点之间的距离是523,数轴上表示 2 和3 的两点之间的距离是 2(3)5.(2)数轴上表示x和2 的两点之间的距离为|x2|.(3)若x表示一个有理数,且4x2,则|x2|x4|6.(4)因为|x3
36、|x5|8,所以3x5,所以x的整数值为3,2,1,0,1,2,3,4,5.2.22.2有理数的减法有理数的减法第2 2课时有理数的加减混合运算知识点 1有理数加减混合运算1计算:(5)(2)(3)(9)(5)(_)(_)(9)_2计算:(1)(5)(1)(6)_;(2)713620_32017绍兴计算 6(3)(7)(5)所得的结果是()A7 B9 C5 D34下列交换加数位置的变形,正确的是()33A5 2 5244B539359C34674376D812162381623125计算:1521(1)( ) ;4632(2)4.7(8.9)7.5(6);(3)0(6)2(13)(8);132
37、(4) (0.25)( )( )343知识点 2有理数加减混合运算的简单应用6 一架飞机在空中做特技表演, 起飞后的高度变化情况如下: 上升 4.5 km, 下降 3.2 km,上升 1.1 km,下降 1.4 km.此时飞机比起飞点高_7列式计算:234(1) 与 的和减去的差是多少?55153 (2)3.6 与 2 的和减去一个数的差为2,求这个数48小明家某月的收支情况如下:爸爸、妈妈的工资分别为8000 元和 6500 元,水电费190 元,买菜、米等花去1000 元,煤气费110 元,更换冰箱3000 元只看这个月,小明家是收入还是支出?如果是收入,收入多少钱?如果是支出,支出多少钱
38、?9. 下列各式中,与 3195 的值相等的是()A3(19)(5)B3(19)(5)C3(19)5D3(19)(5)10若xwyz表示运算xz(yw),则3521的结果是(A5 B7 C9 D1111计算:12345699100_.12计算:(1)(1.75)1345(1.05)23(2.2);)77117(2)2.1215431513 兴华粮食中转站仓库在9 月 1 日至 9 月 10 日的时间内运进、 运出粮食情况如下(运进记做“”,运出记做“”):1050 吨,500 吨,2300 吨,80 吨,150 吨,320 吨,600 吨,360 吨,500 吨,210 吨在 9 月 1 日前
39、仓库内没有粮食(1)求 9 月 3 日仓库内共有粮食多少吨;(2)哪一天仓库内的粮食最多?最多是多少?(3)若每吨粮食的运费(包括运进、运出)是 10 元,从 9 月 1 日到 9 月 10 日仓库共需付运费多少元?14小明在电脑中设置了一个有理数的运算程序:输入数a,加*键,再输入数b,就可以得到运算:a*b(ab)|ba|.(1)求(3)*2 的值;(2)求(3*4)*(5)的值12332.(1)0(2)203C4.A15215解:(1)( ) 46321152 42631152 ( )4263333 .424(2)4.7(8.9)7.5(6)4.78.97.564.78.97.5(6)1
40、3.6(13.5)0.1.(3)0(6)2(13)(8)62(13)(8)813813.132(4) (0.25)( )( )3431132 ( )( )34431213 33441(1)0.61 km2344117解:(1)( )( )()(1)().551515153(2)这个数为3.62(2)1.15.48解:爸爸、妈妈的工资分别为8000 元和 6500 元,水电费 190 元,买菜、米等花去 1000 元,煤气费 110 元,更换冰箱 3000 元,800065001901000110300010200(元),只看这个月,小明家是收入,收入10200 元9A.10C11501212
41、解:(1)原式(1.751.05)(0.82.2)332.8314.8.77117(2)原式212154315711212437715152002.13解:(1)105050023002850(吨)答:9 月 3 日仓库内共有粮食 2850 吨(2)9 月 9 日仓库内的粮食最多,最多是 2850801503206003605003040(吨)(3)运进 105023006005004450(吨),运出|50080150320360210|1620(吨)10(44501620) 10607060700(元)答:从 9 月 1 日到 9 月 10 日仓库共需付运费 60700 元14解:(1)(
42、3)*2(32)|2(3)|5510.(2)3*4(34)|43|2, (2)*(5)(2)(5)|5(2)|0,(3*4)*(5)0.2 23 3有理数的乘法有理数的乘法第1 1课时有理数的乘法知识点 1有理数的乘法法则1计算:(1)(2)(3)(2_)_;1(2)4_(4_)_;2(3)(1)3_(13)_;(4)8(9)_(89)_;(5)(2018)0_312( )( )_0;(12)(2.1)_0.(填“”或“0,且ab0,那么()Aa0,b0Ba0Ca, b异号且正数的绝对值较小Da, b异号且负数的绝对值较小116.的倒数是_517 有理数a,b,c,d在数轴上对应的点的位置如图
43、231 所示, 则abc_0,abcd_0.(填“”或“”)图 23118东东有 5 张写着不同数字的卡片,如图232:图 232他想从中取出 2 张卡片, 使这 2 张卡片上的数字乘积最大 你知道应该如何抽取吗?最大的乘积是多少?19在数轴上,点A到原点的距离为 3,点B到原点的距离为 5,如果点A表示的有理数为a,点B表示的有理数为b,求a与b的乘积1111120计算:(1)(1)(1)(1)(1)2018201720161001100011(1)36(2)2(3)32(4)72 (5)023.这个数相反数4(1)10(2)27(3)22(4)0(5)10(6)55C6D7311(2)(
44、)(3)2 33.228(1)7(2)20(3)1800119.(8)810.A11.0166175312(1)(2)(3)(4)282713B14 B15 A16517 18 解:抽取写有4 和5 的两张卡片,最大的乘积是(4)(5)20.19解:当点A与点B位于原点同侧时,a,b的符号相同,则ab3515 或ab(3)(5)15;当点A与点B位于原点异侧时,a,b的符号相反,则ab3(5)15 或ab(3)515.综上所述,a与b的乘积为 15 或15.201720162015(2014)(1000)(999)20解:原式201510011000201820172016999.20182.
45、32.3有理数的乘法有理数的乘法第2 2课时有理数的乘法运算律知识点 1乘法运算律的运用1在算式相应步骤后面填上这一步所依据的运算律:(0.4)(0.8)(1.25)2.5(0.40.81.252.5)(0.42.50.81.25)(_)(0.42.5)(0.81.25)(_)(11)1.2.1416112121412161211212 运用了(A乘法交换律B乘法结合律C乘法交换律和乘法结合律D分配律3用简便方法计算:(1)(141162)12;)(2)(0.25)16(4);(3)5319418(36);(4)(47)23(134)12.知识点 2分配律的逆用4572436247924(57
46、3679)24 应用了(A加法交换律 B乘法交换律C乘法结合律 D分配律的逆用5计算:(1)637437537;)311(2)25 (25) 25 .424136某鞋店购进一批皮鞋共 600 双,第一周卖了总数的 ,第二周卖了总数的 ,第三周587卖了总数的,经过三周店里还剩多少双皮鞋?407运用乘法运算律计算:(1)25(0.4)2018(0.1);13411(2)( )(60);6205122215(3)13 0.34 (13) 0.34.37378有 6 张写着不同数字的卡片: 3 , 2 , 0 , 8 , 5 , 1 ,从中任意抽取 3 张(1)使这 3 张卡片上的数字的积最小,应该
47、如何抽?积又是多少?(2)使这 3 张卡片上的数字的积最大,应该如何抽?积又是多少?9阅读下列计算过程,你能得到怎样的启发?9118154151015150149.19191919请根据上述计算过程,完成下列各题的计算:14(1)9912;151(2)258.1610阅读材料,回答问题:1111321,23231111(1 )(1 )(1 )(1 )24353524 243532542345111.根据以上信息,请求出下式的结果:11111111(1 )(1 )(1 )(1)(1 )(1 )(1 )(1)24620357211乘法交换律乘法结合律2D1113解:(1)原式 12 12 1232
48、61.462111(2)原式(0.25)(4)1 .666531(3)原式 (36) (36)(36)9418202725.4271472111(4)原式 ( )( )1 .73427432334D335解:(1)原式(645) (7) 3.77311(2)25 (25) 2542431125 25 2542431125 424325275.21376解:6001 150(双)5840答:经过三周店里还剩 150 双皮鞋7解:(1)原式(250.4)0.12018100.12018120182018.13411(2)原式( )(60)(60) (60)(60)62051210948558.21
49、25(3)原式13( )0.34( )130.34337713.34.8解:(1)抽取写有8,5,2 的 3 张卡片,积为(8)5280.(2)抽取写有8,3,5 的 3 张卡片,积为8(3)5120.11419解:(1)原式1001210012121200 1199 .1515551111(2)原式2582588200 200 .161622111111110解 :11111112462035711213572124620 24620357213254762120234567202111111.2.42.4有理数的除法有理数的除法知识点 1有理数的除法12017苏州计算(21)7 的结果是(
50、)A3 B3 C.113 D32下列计算正确的是()A0(3)13B(337)(35)5C1(19)9D(3194)(12)83两个有理数的商为正数,则()A它们的和为正数B它们的和为负数C至少有一个数为正数D它们的积为正数4算式(34)()2 中的括号内应填(A33332 B.2 C8 D.85计算:(1)567; (2)(1)(0.1);)77(3)0(2018); (4)() ;24321(5)35.32知识点 2有理数的乘除混合运算6下列各式的运算结果为负的是()A1(2)(3) B(1)2(3)C(1)(2)(3) D(1)207计算:1(1)349;91(2)(12)(4)1;52