《高考数学一轮复习讲义 函数的单调性课件 人教大纲版.ppt》由会员分享,可在线阅读,更多相关《高考数学一轮复习讲义 函数的单调性课件 人教大纲版.ppt(49页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2.3 2.3 函数的单调性函数的单调性基础知识基础知识 自主学习自主学习要点梳理要点梳理1.1.函数的单调性函数的单调性(1 1)单调函数的定义)单调函数的定义 增函数增函数减函数减函数定定义义一般地,设函数一般地,设函数f f(x x)的定义域为)的定义域为I I. .如果对于定如果对于定义域义域I I内某个区间内某个区间D D上的任意两个自变量上的任意两个自变量x x1 1,x x2 2 定定义义当当x x1 1 x x2 2时时, ,都有都有 ,那,那么就说函数么就说函数f f( (x x) )在区在区间间D D上是增函数上是增函数 当当x x1 1 x x2 2时,都有时,都有 ,那
2、么就,那么就说函数说函数f f(x x)在区间)在区间D D上是减函数上是减函数 图图象象描描述述自左向右看图象是自左向右看图象是_ 自左向右看图象是自左向右看图象是_ f f(x x1 1) )f f( (x x2 2) )上升的上升的下降的下降的(2)(2)单调区间的定义单调区间的定义 若函数若函数f f( (x x) )在区间在区间D D上是上是_或或_,则称,则称 函数函数f f(x x)在这一区间上具有(严格的)单调性,)在这一区间上具有(严格的)单调性, _叫做叫做f f(x x)的单调区间)的单调区间. . 增函数增函数减函数减函数区间区间D D2.2.函数的最值函数的最值 前提
3、前提 设函数设函数y y= =f f( (x x) )的定义域为的定义域为I I,如果存在实数,如果存在实数M M满足满足 条件条件 对于任意对于任意x xI I,都有都有_; 存在存在x x0 0I I, ,使得使得_. _. 对于任意对于任意x xI I,都,都有有_;存在存在x x0 0I I, ,使得使得_. _. 结论结论 M M为最大值为最大值 M M为最小值为最小值 f f(x x)M Mf f(x x0 0)= =M Mf f(x x)M Mf f(x x0 0)= =M M基础自测基础自测1.1.下列函数中,在区间(下列函数中,在区间(0 0,2 2)上为增函数的是)上为增函
4、数的是 ( )( ) A. A.y y=-=-x x+1 B.+1 B.y y= = C. C.y y= =x x2 2-4-4x x+5 D.+5 D. 解析解析 y y=-=-x x+1,+1,y y= =x x2 2-4-4x x+5, +5, 分别为一次函分别为一次函 数、数、 二次函数、反比例函数二次函数、反比例函数, ,从它们的图象上可从它们的图象上可 以看出在(以看出在(0 0,2 2)上都是减函数)上都是减函数. .xy2Bxy2x2.2.已知函数已知函数y y= =f f( (x x) )是定义在是定义在R R上的增函数上的增函数, ,则则f f( (x x)=0)=0的的
5、根根 ( ) A.A.有且只有一个有且只有一个 B.B.有有2 2个个 C.C.至多有一个至多有一个 D.D.以上均不对以上均不对 解析解析 f f(x x)在)在R R上是增函数,上是增函数, 对任意对任意x x1 1, ,x x2 2R R, ,若若x x1 1 x x2 2, ,则则f f( (x x1 1)f f( (x x2 2),), 反之亦成立反之亦成立. .故若存在故若存在f f( (x x0 0)=0,)=0,则则x x0 0只有一个只有一个. . 若对任意若对任意x xR R都有都有f f( (x x)0,)0,则则f f( (x x)=0)=0无根无根. . C3.3.已
6、知已知f f( (x x) )为为R R上的减函数,则满足上的减函数,则满足 的实数的实数x x的取值范围是的取值范围是 ( ) A.(-1,1)A.(-1,1) B.(0,1) B.(0,1) C.(-1,0)(0,1) C.(-1,0)(0,1) D. D.(-,-1)(1,+)-,-1)(1,+) 解析解析 由已知条件:由已知条件: 不等式等价于不等式等价于 解得解得-1-1x x1,1,且且x x0. 0. ) 1 (|)1(|fxf, 1|1|x,01|xxC4.4.函数函数y y=(2=(2k k+1)+1)x x+ +b b在(在(-,+)上是减函数,则)上是减函数,则 ( )(
7、 ) A. B. A. B. C. D. C. D. 解析解析 使使y y=(2=(2k k+1)+1)x x+ +b b在(在(-,+)上是减函数,)上是减函数, 则则2 2k k+10+10)0; ( (x x1 1- -x x2 2)f f( (x x1 1)-)-f f( (x x2 2)0)0; 其中能推出函数其中能推出函数y y= =f f( (x x) )为增函数的命题为为增函数的命题为_._. 解析解析 依据增函数的定义可知,对于依据增函数的定义可知,对于,当自变,当自变 量增大时,相对应的函数值也增大,所以量增大时,相对应的函数值也增大,所以可推可推 出函数出函数y y= =
8、f f(x x)为增函数)为增函数. . ; 0)()(2121xxxfxf. 0)()(2121xxxfxf题型分类题型分类 深度剖析深度剖析题型一题型一 函数单调性的判断函数单调性的判断 判断下列函数的单调性,并证明判断下列函数的单调性,并证明. . 先判断单调性,再用单调性的定义先判断单调性,再用单调性的定义 证明证明. .(1 1)采用通分进行变形,()采用通分进行变形,(2 2)采用因式)采用因式 分解进行变形,(分解进行变形,(3 3)采用分子有理化的方式进)采用分子有理化的方式进 行变形行变形. .)., 1, 1)() 3();, 1 , 12)()2();, 1(,12)()
9、 1 (2xxxfxxxxfxxxf思维启迪思维启迪解解 (1 1)函数)函数下面采用定义证明下面采用定义证明: :任取任取x x1 1、x x2 2(-1-1,+),且),且-1-1x x1 1 x x2 2,则有则有x x1 1- -x x2 200,-1-1x x1 1 0,+10,x x2 2+10,+10,x x2 2- -x x1 10.0.即即f f( (x x1 1)-)-f f( (x x2 2)0)0,所以,所以f f( (x x1 1)f f( (x x2 2).).), 1(12)(上为减函数在xxf,) 1)(1()(21212)()(21122121xxxxxxxf
10、xf, 0) 1)(1()(22112xxxx故故 在(在(-1-1,+)上为减函数)上为减函数. .(2 2)函数)函数f f( (x x)=-)=-x x2 2+2+2x x+1+1在在1,+1,+)上为减函数,)上为减函数,证明如下:证明如下:任取任取x x1 1、x x2 2R R,且,且x x2 2 x x1 11,1,则则f f( (x x1 1)-)-f f( (x x2 2)=)=(=(x x2 2+ +x x1 1)()(x x2 2- -x x1 1)+2()+2(x x1 1- -x x2 2) )=(=(x x2 2- -x x1 1)()(x x2 2+ +x x1
11、1-2).-2).x x2 2 x x1 11,1,x x2 2- -x x1 10,0,x x2 2+ +x x1 12,2,x x2 2+ +x x1 1-20,-20,f f( (x x1 1)-)-f f( (x x2 2)=()=(x x2 2- -x x1 1)()(x x2 2+ +x x1 1-2)0,-2)0,即有即有f f( (x x1 1)f f( (x x2 2).).12)(xxf) 12() 12(222121xxxx)(2)(212122xxxx故函数故函数f f( (x x)=-)=-x x2 2+2+2x x+1+1在在1,+1,+)上是减函数)上是减函数.
12、.(3 3)函数)函数f f( (x x)= )= 在在-1-1,+)上为增函数,)上为增函数,证明如下:证明如下:任取任取x x1 1、x x2 2-1,+-1,+)且)且-1-1x x1 1 x x2 2,则有则有x x1 1- -x x2 200,1x11) 1() 1(11)11)(11(11)()(21212121212121xxxxxxxxxxxxxfxff f( (x x1 1)-)-f f( (x x2 2)0,)0,即即f f( (x x1 1)f f( (x x2 2).).故函数故函数f f( (x x)= )= 在在-1,+-1,+)上为增函数)上为增函数. . 对于给
13、出具体解析式的函数,判断或对于给出具体解析式的函数,判断或证明其在某区间上的单调性问题,可以结合定义证明其在某区间上的单调性问题,可以结合定义(基本步骤为取点、作差或作商、变形、判断)(基本步骤为取点、作差或作商、变形、判断)求解求解. ., 011. 01, 01, 0,1,1121212121212121xxxxxxxxxxxxxx探究提高探究提高1x知能迁移知能迁移1 1 已知函数已知函数 证明:函数证明:函数f f( (x x) )在在(-1,+)(-1,+)上为增函数上为增函数. . (1 1)用函数单调性的定义)用函数单调性的定义. . (2 2)用导数法)用导数法. . 证明证明
14、 任取任取x x1 1, ,x x2 2(-1,+),(-1,+), 不妨设不妨设x x1 1 0, 0, ).1(12)(axxaxfx, 01112xxxaa且思维启迪思维启迪又又x x1 1+10,+10,x x2 2+10,+10,于是于是f f( (x x2 2)-)-f f( (x x1 1)= )= 故函数故函数f f( (x x) )在(在(-1,+-1,+)上为增函数)上为增函数. . , 0) 1(12112xxxxxaaaa, 0) 1)(1()( 3) 1)(1() 1)(2() 1)(2(121221122121121122xxxxxxxxxxxxxx, 012121
15、12212xxxxaaxx题型二题型二 复合函数的单调性复合函数的单调性【例例2 2】 已知函数已知函数f f( (x x)=log)=log2 2( (x x2 2-2-2x x-3)-3),则使,则使f f( (x x) )为减函为减函 数的区间是数的区间是( )( ) A.(3,6) B.(-1,0) A.(3,6) B.(-1,0) C.(1,2) D. C.(1,2) D.(-3,-1-3,-1) 先求得函数的定义域,然后再结合二先求得函数的定义域,然后再结合二 次函数、对数函数的单调性进行考虑次函数、对数函数的单调性进行考虑. . 解析解析 由由x x2 2-2-2x x-30-3
16、0,得,得x x-13,3,结合二次函数结合二次函数 的对称轴直线的对称轴直线x x=1=1知,在对称轴左边函数知,在对称轴左边函数y y= =x x2 2-2-2x x-3-3 是减函数,所以在区间(是减函数,所以在区间(-,-1-1)上是减函数,)上是减函数, 由此可得由此可得D D项符合项符合. . 思维启迪思维启迪D (1 1)复合函数是指由若干个函数复合而)复合函数是指由若干个函数复合而成的函数,它的单调性与构成它的函数成的函数,它的单调性与构成它的函数u u= =g g( (x x),),y y= =f f( (u u) )的单调性密切相关,其单调性的规律为的单调性密切相关,其单调
17、性的规律为“同增异减同增异减”,即即f f( (u u) )与与g g( (x x) )有相同的单调性,则有相同的单调性,则f f g g( (x x)必为增函必为增函数,若具有不同的单调性,则数,若具有不同的单调性,则f f g g( (x x)必为减函数必为减函数. .(2 2)讨论复合函数单调性的步骤是:)讨论复合函数单调性的步骤是:求出复合函数的定义域;求出复合函数的定义域;把复合函数分解成若干个常见的基本函数并判断其把复合函数分解成若干个常见的基本函数并判断其单调性;单调性;把中间变量的变化范围转化成自变量的变化范围;把中间变量的变化范围转化成自变量的变化范围;根据上述复合函数的单调
18、性规律判断其单调性根据上述复合函数的单调性规律判断其单调性. . 探究提高探究提高知能迁移知能迁移2 2 函数函数y y= = 的递减区间为的递减区间为 ( ) A.(1,+) B. A.(1,+) B. C. D. C. D. 解析解析 作出作出t t=2=2x x2 2-3-3x x+1+1的示意的示意 图如图所示,图如图所示, 0 1, 0 00时,时,f f( (x x)0,) x x2 2, ,则则x x1 1- -x x2 20,0,f f(x x1 1)- -f f(x x2 2)= =f f(x x1 1)+ +f f(-(-x x2 2)=)=f f( (x x1 1- -x
19、 x2 2).).又又x x00时时, ,f f( (x x)0,)0,0,f f( (x x1 1- -x x2 2)0,)0,即即f f( (x x1 1) x x2 2, ,则则f f( (x x1 1)-)-f f( (x x2 2)=)=f f( (x x1 1- -x x2 2+ +x x2 2)-)-f f( (x x2 2) )= =f f( (x x1 1- -x x2 2)+)+f f( (x x2 2)-)-f f( (x x2 2)=)=f f( (x x1 1- -x x2 2).).又又x x00时时, ,f f( (x x)0.)0,0,f f( (x x1 1-
20、 -x x2 2)0,)0,即即f f( (x x1 1)11时时, ,f f( (x x)0,) x x2 20,0,则则 又又当当x x11时,时,f f( (x x)0)0,而,而 即即f f( (x x1 1)-)-f f( (x x2 2)0,)0,f f(x x1 1) 00时,时,f f( (x x)1.)1. (1 1)求证:)求证:f f( (x x) )是是R R上的增函数;上的增函数; (2 2)若)若f f(4)=5,(4)=5,解不等式解不等式f f(3(3m m2 2- -m m-2)3.-2)3. 问题(问题(1 1)是抽象函数单调性的证明,)是抽象函数单调性的证
21、明, 所以要用单调性的定义所以要用单调性的定义. . 问题(问题(2 2)将函数不等式中抽象的函数符号)将函数不等式中抽象的函数符号“f f” 运用单调性运用单调性“去掉去掉”,为此需将右边常数,为此需将右边常数3 3看成某看成某 个变量的函数值个变量的函数值. . 思维启迪思维启迪(1 1)证明证明 设设x x1 1, ,x x2 2R R,且,且x x1 1 0,0,f f( (x x2 2- -x x1 1)1. )1. f f( (x x2 2)-)-f f( (x x1 1)=)=f f(x x2 2- -x x1 1)+)+x x1 1)-)-f f( (x x1 1) )= =f
22、 f( (x x2 2- -x x1 1)+)+f f( (x x1 1)-1-)-1-f f( (x x1 1) )= =f f( (x x2 2- -x x1 1)-10. )-10. f f(x x2 2) f f( (x x1 1).).即即f f( (x x) )是是R R上的增函数上的增函数. . 解题示范解题示范2 2分分5 5分分6 6分分(2 2)解解 f f(4 4)= =f f(2+22+2)= =f f(2 2)+ +f f(2 2)-1=5-1=5, f f(2 2)=3=3,原不等式可化为原不等式可化为f f(3(3m m2 2- -m m-2)-2)f f(2),
23、(2),f f( (x x) )是是R R上的增函数,上的增函数,33m m2 2- -m m-22, -22, 解得解得-1-1m m , ,故解集为故解集为 f f( (x x) )在定义域上(或某一单调区间上)在定义域上(或某一单调区间上)具有单调性,则具有单调性,则f f( (x x1 1)f f( (x x2 2) ) f f( (x x1 1)-)-f f( (x x2 2)0,)0,若函数是若函数是增函数增函数, ,则则f f( (x x1 1)f f( (x x2 2) ) x x1 1 11时,时,f f( (x x)0.)0. (1 1)求)求f f(1)(1)的值;的值;
24、 (2 2)判断)判断f f( (x x)的单调性;)的单调性; (3 3)若)若f f(3)=-1,(3)=-1,解不等式解不等式f f(|(|x x|)-2.|)0,0, 代入得代入得f f(1)=(1)=f f( (x x1 1)-)-f f( (x x1 1)=0,)=0,故故f f(1)=0. (1)=0. )(21xxf(2 2)任取)任取x x1 1, ,x x2 2(0,+)(0,+),且,且x x1 1 x x2 2, ,则则 由于当由于当x x11时,时,f f( (x x)0,)0,所以所以 即即f f( (x x1 1)-)-f f( (x x2 2)0,)0,因此因此
25、f f( (x x1 1)f f( (x x2 2),),所以函数所以函数f f( (x x) )在区间在区间(0,+)(0,+)上是单调递减函数上是单调递减函数. .(3 3)由)由 = =f f( (x x1 1)-)-f f( (x x2 2) )得得 = =f f(9)-(9)-f f(3),(3),而而f f(3)=-1,(3)=-1,所以所以f f(9)=-2.(9)=-2.由于函数由于函数f f( (x x) )在区间(在区间(0,+0,+)上是单调递减函数,)上是单调递减函数,由由f f(|(|x x|)|)9,|9,x x99或或x x-9.99或或x x-9. -9. ,
26、121xx, 0)(21xxf)(21xxf)39(f1.1.根据函数的单调性的定义,证明(判定)函数根据函数的单调性的定义,证明(判定)函数 f f( (x x) )在其区间上的单调性,其步骤是在其区间上的单调性,其步骤是 (1 1)设)设x x1 1、x x2 2是该区间上的任意两个值,且是该区间上的任意两个值,且x x1 1x x2 2; (2 2)作差)作差f f(x x1 1)- -f f(x x2 2),然后变形;),然后变形; (3 3)判定)判定f f(x x1 1)- -f f(x x2 2)的符号;)的符号; (4 4)根据定义作出结论)根据定义作出结论. .方法与技巧方法
27、与技巧思想方法思想方法 感悟提高感悟提高2.2.求函数的单调区间求函数的单调区间 首先应注意函数的定义域,函数的增减区间都是其首先应注意函数的定义域,函数的增减区间都是其 定义域的子集定义域的子集; ;其次掌握一次函数、二次函数等基本其次掌握一次函数、二次函数等基本 初等函数的单调区间初等函数的单调区间. .常用方法有:根据定义,利用常用方法有:根据定义,利用 图象和单调函数的性质,还可以利用导数的性质图象和单调函数的性质,还可以利用导数的性质. .3.3.复合函数的单调性复合函数的单调性 对于复合函数对于复合函数y y= =f f g g( (x x),),若若t t= =g g( (x x
28、) )在区间在区间( (a a, ,b b) )上是上是 单调函数单调函数, ,且且y y= =f f( (t t) )在区间在区间( (g g( (a a),),g g( (b b)或者或者( (g g( (b b),), g g( (a a)上是单调函数上是单调函数, ,若若t t= =g g( (x x) )与与y y= =f f( (t t) )的单调性相同的单调性相同 ( (同时为增或减同时为增或减),),则则y y= =f f g g( (x x)为增函数为增函数; ;若若t t= =g g( (x x) )与与 y y= =f f( (t t) )的单调性相反的单调性相反, ,则
29、则y y= =f f g g( (x x)为减函数为减函数. . 简称为简称为: :同增异减同增异减. . 1.1.函数的单调区间是指函数在定义域内的某个区间上函数的单调区间是指函数在定义域内的某个区间上 单调递增或单调递减单调递增或单调递减. .单调区间要分开写,即使在两单调区间要分开写,即使在两 个区间上的单调性相同个区间上的单调性相同, ,也不能用并集表示也不能用并集表示. .2.2.两函数两函数f f( (x x) )、g g( (x x) )在在x x(a a, ,b b) )上都是增上都是增( (减减) )函数函数, ,则则 f f( (x x)+)+g g( (x x) )也为增
30、也为增( (减减) )函数函数, ,但但f f( (x x)g g( (x x) ), 等的等的 单调性与其正负有关,切不可盲目类比单调性与其正负有关,切不可盲目类比. . 失误与防范失误与防范)(1xf一、选择题一、选择题1.1.若函数若函数y y= =axax与与 在在(0,+)(0,+)上都是减函数,上都是减函数, 则则y y= =axax2 2+ +bxbx在(在(0 0,+)上是)上是 ( ) A.A.增函数增函数 B.B.减函数减函数 C.C.先增后减先增后减 D.D.先减后增先减后增 解析解析 y y= =axax与与 在在(0,+)(0,+)上都是减函数,上都是减函数, a a
31、0,0,b b000且且a a11)是)是R R上上 的减函数,则的减函数,则a a的取值范围是的取值范围是 ( ) A.A.(0 0,1 1) B. B. C. D. C. D. 解析解析 据单调性定义,据单调性定义,f f(x x)为减函数应满足:)为减函数应满足:0, 0,3)(xaxaxxfx) 1 ,3131, 0(32, 0(. 131,3, 100aaaa即B3.3.下列四个函数中下列四个函数中, ,在在(0,1)(0,1)上为增函数的是(上为增函数的是( ) A.A.y y=sin =sin x x B.B.y y=-log=-log2 2x x C. C. D. D. 解析解
32、析 y y=sin =sin x x在在 上是增函数,上是增函数, y y=sin =sin x x在(在(0 0,1 1)上是增函数)上是增函数. . xy)21(21 xy2,2A4.4.(2009(2009天津理,天津理,8)8)已知函数已知函数 若若f f(2-(2-a a2 2)f f( (a a) ),则实数,则实数a a 的取值范围是的取值范围是 ( ) A.A.(-,-1-,-1)(2,+) B.(-1,2)(2,+) B.(-1,2) C.(-2,1) D.(-,-2)(1,+) C.(-2,1) D.(-,-2)(1,+) 解析解析 由由f f( (x x) )的图象的图象
33、 可知可知f f( (x x) )在在(-,+)(-,+)上是单调递增函数上是单调递增函数, ,由由f f(2-(2-a a2 2) ) f f( (a a) )得得2-2-a a2 2 a a, ,即即a a2 2+ +a a-20,-20,解得解得-2-2a a1. 1,e1,函数函数f f( (x x) )的单调减区间为的单调减区间为 23,(),2323, 1()4 ,23425)23(2x),4 ,23).4 ,23D二、填空题二、填空题7.7.已知已知y y= =f f( (x x) )是定义在(是定义在(-2-2,2 2)上的增函数,若)上的增函数,若 f f( (m m-1)-
34、1)f f(1-2(1-2m m) ),则,则m m的取值范围是的取值范围是 . . 解析解析 依题意,原不等式等价于依题意,原不等式等价于.3221322321312112212212mmmmmmmm)32,21(8.8.已知定义域为已知定义域为D D的函数的函数f f( (x x) ),对任意,对任意x xD D,存在正数,存在正数 K K,都有,都有| |f f( (x x)|)|K K成立,则称函数成立,则称函数f f( (x x) )是是D D上的上的“有有 界函数界函数”. .已知下列函数已知下列函数: :f f( (x x)=2sin )=2sin x x; ;f f( (x x
35、)= )= f f( (x x)=1-2)=1-2x x; ; 其中是其中是“有界函数有界函数”的是的是 _._.(写出所有满足要求的函数的序号)(写出所有满足要求的函数的序号) ,1)(2xxxf;12x解析解析 中中| |f f(x x)|=|2sin |=|2sin x x|2,|2,中中| |f f(x x)|1;|1;中中当当x x=0=0时,时,f f( (x x)=0)=0,总之,总之,| |f f( (x x)| )| 中中f f( (x x)1,|)1,|f f(x x)|+,|+,故填故填. . 答案答案 ),0(21|1|11| )(|2xxxxxxf;219.9.已知函
36、数已知函数y y= =f f( (x x) )是是R R上的偶函数,对于上的偶函数,对于x xR R都有都有f f( (x x+6)+6) = =f f( (x x)+)+f f(3)(3)成立,当成立,当x x1 1, ,x x2 20,30,3,且,且x x1 1x x2 2时,都有时,都有 给出下列命题:给出下列命题: f f(3 3)=0=0; 直线直线x x=-6=-6是函数是函数y y= =f f( (x x) )的图象的一条对称轴;的图象的一条对称轴; 函数函数y y= =f f( (x x) )在在-9-9,-6-6上为增函数;上为增函数; 函数函数y y= =f f( (x
37、x) )在在-9-9,9 9上有四个零点上有四个零点. . 其中所有正确命题的序号为其中所有正确命题的序号为_(把所有(把所有 正确命题的序号都填上)正确命题的序号都填上) , 0)()(2121xxxfxf 解析解析 x x1 1x x2 2时,都有时,都有 f f(x x)在)在0 0,3 3上递增上递增. .f f(x x+6+6)= =f f(x x)+ +f f(3 3),令),令x x=-3,=-3,得得f f(3)=(3)=f f(-3)+(-3)+f f(3),(3),f f(-3)=(-3)=f f(3)=0.(3)=0.正确正确. .f f( (x x+6)=+6)=f f
38、( (x x).).f f( (x x) )周期为周期为6 6,画出示意图如下:,画出示意图如下:由图象知:由图象知:正确,正确,不正确,故填不正确,故填. . 答案答案 , 0)()(2121xxxfxf三、解答题三、解答题10.10.判断判断f f( (x x)= )= 在在(-,0)(0,+)(-,0)(0,+)上的单调性上的单调性. . 解解 -11,-11,f f(-1-1)=-1=-1f f(1)=1,(1)=1, f f(x x)在()在(-,0 0)(0,+)(0,+)上不是减函数上不是减函数. . -2-1, -2(-2)= f f(-1)=-1,(-1)=-1, f f(
39、(x x) )在(在(-,0 0)(0 0,+)上不是增函数)上不是增函数. . f f(x x)在()在(-,0 0)(0,+)(0,+)上不具有单调性上不具有单调性. . x12111.11.已知已知 (1 1)若)若a a=-2,=-2,试证试证f f( (x x) )在(在(-,-2-,-2)内单调递增;)内单调递增; (2 2)若)若a a00且且f f( (x x) )在(在(1,+1,+)内单调递减,求)内单调递减,求a a的的 取值范围取值范围. . (1 1)证明证明 任设任设x x1 1 x x2 2-2,0,+2)0,x x1 1- -x x2 20,0, f f( (x
40、 x1 1)f f( (x x2 2),), f f( (x x) )在在(-,-2)(-,-2)内单调递增内单调递增. . ).()(axaxxxf.)2)(2()(22221212211xxxxxxxx(2 2)解解 任设任设11x x1 1 0,0,x x2 2- -x x1 10,0,要使要使f f( (x x1 1)-)-f f( (x x2 2)0,)0,只需只需( (x x1 1- -a a)()(x x2 2- -a a)0)0恒成立,恒成立,a a1.1.综上所述知综上所述知000+30及及 得得x x0, 0, 由由f f(6)=1(6)=1及及 得得f f x x( (x x+3)2+3)2f f(6),(6),即即f f x x( (x x+3)-+3)-f f(6)(6)f f(6),(6),亦即亦即 因为因为f f( (x x) )在在(0,+)(0,+)上是增函数上是增函数, ,所以所以 解得解得 综上所述,不等式的解集是综上所述,不等式的解集是, 01x).6(6)3(fxxf. 2)1()3(xfxf, 66)3(xx.2173321733x.217330| xx