212指数函数及其性质(一).ppt

上传人:仙*** 文档编号:18018519 上传时间:2022-05-28 格式:PPT 页数:51 大小:3.57MB
返回 下载 相关 举报
212指数函数及其性质(一).ppt_第1页
第1页 / 共51页
212指数函数及其性质(一).ppt_第2页
第2页 / 共51页
点击查看更多>>
资源描述

《212指数函数及其性质(一).ppt》由会员分享,可在线阅读,更多相关《212指数函数及其性质(一).ppt(51页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2.1.2指数函数指数函数及其性质及其性质主讲老师:银正琴主讲老师:银正琴复复 习习 引引 入入某种细胞分裂时,由某种细胞分裂时,由1个分裂成个分裂成2个;个;2个分裂成个分裂成4个;个;4个分裂成个分裂成8个;个;8个分裂成个分裂成16个;个;,1个这样的细胞分裂个这样的细胞分裂x次后,得到的细胞个次后,得到的细胞个数数y与与x的函数关系式是什么?的函数关系式是什么?引例:引例:复复 习习 引引 入入某种细胞分裂时,由某种细胞分裂时,由1个分裂成个分裂成2个;个;2个分裂成个分裂成4个;个;4个分裂成个分裂成8个;个;8个分裂成个分裂成16个;个;,1个这样的细胞分裂个这样的细胞分裂x次后,

2、得到的细胞个次后,得到的细胞个数数y与与x的函数关系式是的函数关系式是引例:引例:y2x.1. 指数函数的定义指数函数的定义讲讲 授授 新新 课课y1 ax1. 指数函数的定义指数函数的定义系数为系数为1讲讲 授授 新新 课课y1 ax1. 指数函数的定义指数函数的定义自变量自变量系数为系数为1讲讲 授授 新新 课课y1 ax1. 指数函数的定义指数函数的定义常数常数自变量自变量系数为系数为1讲讲 授授 新新 课课y1 ax1. 指数函数的定义指数函数的定义讲讲 授授 新新 课课 一般地,函数一般地,函数yax(a0且且a1)叫做叫做指数函数指数函数,其中,其中x是自变量,函数定义域是自变量,

3、函数定义域是是R.1. 指数函数的定义指数函数的定义讲讲 授授 新新 课课 一般地,函数一般地,函数yax(a0且且a1)叫做叫做指数函数指数函数,其中,其中x是自变量,函数定义域是自变量,函数定义域是是R.对常数对常数a的考虑:的考虑:1. 指数函数的定义指数函数的定义讲讲 授授 新新 课课 一般地,函数一般地,函数yax(a0且且a1)叫做叫做指数函数指数函数,其中,其中x是自变量,函数定义域是自变量,函数定义域是是R.(1)若若a0,则当,则当x0时,时,ax0; 对常数对常数a的考虑:的考虑:1. 指数函数的定义指数函数的定义讲讲 授授 新新 课课 一般地,函数一般地,函数yax(a0

4、且且a1)叫做叫做指数函数指数函数,其中,其中x是自变量,函数定义域是自变量,函数定义域是是R.(1)若若a0,则当,则当x0时,时,ax0; 当当x0时,时,ax无意义无意义.对常数对常数a的考虑:的考虑:1. 指数函数的定义指数函数的定义讲讲 授授 新新 课课 一般地,函数一般地,函数yax(a0且且a1)叫做叫做指数函数指数函数,其中,其中x是自变量,函数定义域是自变量,函数定义域是是R.(1)若若a0,则当,则当x0时,时,ax0; 当当x0时,时,ax无意义无意义.(2)若若a0,ax没有意义没有意义对常数对常数a的考虑:的考虑:1. 指数函数的定义指数函数的定义讲讲 授授 新新 课

5、课 一般地,函数一般地,函数yax(a0且且a1)叫做叫做指数函数指数函数,其中,其中x是自变量,函数定义域是自变量,函数定义域是是R.(3)若若a1,则,则yax1是一个常数函数是一个常数函数(1)若若a0,则当,则当x0时,时,ax0; 当当x0时,时,ax无意义无意义.(2)若若a0,ax没有意义没有意义对常数对常数a的考虑:的考虑: y10 x; y10 x1; y10 x1; y210 x; y(10) x; y(10a)x (a10,且,且a9);练习:练习:下列函数中,哪些是指数函数下列函数中,哪些是指数函数?放入集合放入集合A中中 yx10; yxx集合集合A: y10 x;

6、y10 x1; y10 x1; y210 x; y(10) x; y(10a)x (a10,且,且a9); yx10; yxx练习:练习:下列函数中,哪些是指数函数下列函数中,哪些是指数函数?放入集合放入集合A中中 y(10a)x(a10,且,且a9) y10 x;集合集合A:例例1 已知指数函数已知指数函数f(x)ax(a0, 且且a1)的图象过点的图象过点(3, ),求,求f(0),f(1),f(3)的值的值.2.指数函数的图象和性质:指数函数的图象和性质:.2 的图象的图象作出函数作出函数xy .2 的图象的图象作出函数作出函数xy 列表列表xxy2 3 2 1 012312488141

7、212.指数函数的图象和性质:指数函数的图象和性质:.10 的图象的图象作出函数作出函数xy 2.指数函数的图象和性质:指数函数的图象和性质:.10 的图象的图象作出函数作出函数xy 列表列表xxy10 3 2 1 012311010010001000110011012.指数函数的图象和性质:指数函数的图象和性质:.21的图象的图象作出函数作出函数xy 2.指数函数的图象和性质:指数函数的图象和性质:.21的图象的图象作出函数作出函数xy 2.指数函数的图象和性质:指数函数的图象和性质:x3 2 1 01238141211248xy 21列表列表.101的图象的图象作出函数作出函数xy 2.指

8、数函数的图象和性质:指数函数的图象和性质:.101的图象的图象作出函数作出函数xy 2.指数函数的图象和性质:指数函数的图象和性质:x3 2 1 0123xy 1011101001000100011001101列表列表1 a象象图图质质性性2.指数函数的图象和性质:指数函数的图象和性质:11 a象象图图质质性性xOy2.指数函数的图象和性质:指数函数的图象和性质:11 a象象图图质质性性)1, 0();, 0(;恒过点恒过点值域为值域为定义域为定义域为RxOy2.指数函数的图象和性质:指数函数的图象和性质:11 a象象图图质质性性)1, 0();, 0(;恒过点恒过点值域为值域为定义域为定义域

9、为R增增递递调调单单 xOy2.指数函数的图象和性质:指数函数的图象和性质:11 a象象图图质质性性)1, 0();, 0(;恒过点恒过点值域为值域为定义域为定义域为R增增递递调调单单 10,01,01 yxyxa时时时时时时xOy2.指数函数的图象和性质:指数函数的图象和性质:11 a10 a象象图图质质性性)1, 0();, 0(;恒过点恒过点值域为值域为定义域为定义域为R增增递递调调单单 10,01,01 yxyxa时时时时时时xOy2.指数函数的图象和性质:指数函数的图象和性质:111 a10 a象象图图质质性性)1, 0();, 0(;恒过点恒过点值域为值域为定义域为定义域为R增增递

10、递调调单单 10,01,01 yxyxa时时时时时时xxOOyy2.指数函数的图象和性质:指数函数的图象和性质:111 a10 a象象图图质质性性)1, 0();, 0(;恒过点恒过点值域为值域为定义域为定义域为R增增递递调调单单 减减递递调调单单 10,01,01 yxyxa时时时时时时xxOOyy2.指数函数的图象和性质:指数函数的图象和性质:111 a10 a象象图图质质性性)1, 0();, 0(;恒过点恒过点值域为值域为定义域为定义域为R增增递递调调单单 减减递递调调单单 10,01,01 yxyxa时时时时时时10,01,010 yxyxa时时时时时时xxOOyy2.指数函数的图象

11、和性质:指数函数的图象和性质:3.底数底数a对指数函数对指数函数yax的图象有何影响的图象有何影响?3.底数底数a对指数函数对指数函数yax的图象有何影响的图象有何影响?(1) a1时,图象时,图象向右不断上升向右不断上升,并且,并且无限靠近无限靠近x轴的负半轴;轴的负半轴;3.底数底数a对指数函数对指数函数yax的图象有何影响的图象有何影响?(1) a1时,图象时,图象向右不断上升向右不断上升,并且,并且无限靠近无限靠近x轴的负半轴;轴的负半轴;0a1时,图象时,图象向右不断下降向右不断下降,并且,并且无限靠近无限靠近x轴的正半轴轴的正半轴3.底数底数a对指数函数对指数函数yax的图象有何影

12、响的图象有何影响?(1) a1时,图象时,图象向右不断上升向右不断上升,并且,并且无限靠近无限靠近x轴的负半轴;轴的负半轴;0a1时,图象时,图象向右不断下降向右不断下降,并且,并且无限靠近无限靠近x轴的正半轴轴的正半轴(2) 对于多个指数函数来说,底数越大对于多个指数函数来说,底数越大的图象在的图象在y轴右侧的部分越高轴右侧的部分越高(简称:右简称:右侧底大图高侧底大图高) 3.底数底数a对指数函数对指数函数yax的图象有何影响的图象有何影响?(1) a1时,图象时,图象向右不断上升向右不断上升,并且,并且无限靠近无限靠近x轴的负半轴;轴的负半轴;0a1时,图象时,图象向右不断下降向右不断下

13、降,并且,并且无限靠近无限靠近x轴的正半轴轴的正半轴(2) 对于多个指数函数来说,底数越大对于多个指数函数来说,底数越大的图象在的图象在y轴右侧的部分越高轴右侧的部分越高(简称:右简称:右侧底大图高侧底大图高) (3) 指数函数指数函数 的图象的图象与与xxayay 1关于关于y轴对称轴对称.例例2 比较下列各题中两个值的大小:比较下列各题中两个值的大小: 1.72.5,1.73; 0.80.1,0.80.2; 1.70.3,0.93.1.5341041 6534 034 4706. 5 006. 53219. 0 019. 0练习:练习:5341 (1) 用用“”或或“”填空:填空:5341

14、041 6534 034 4706. 5 006. 53219. 0 019. 0练习:练习:5341 (1) 用用“”或或“”填空:填空: 5341041 6534 034 4706. 5 006. 53219. 0 019. 0练习:练习:5341 (1) 用用“”或或“”填空:填空: 5341041 6534 034 4706. 5 006. 53219. 0 019. 0练习:练习:5341 (1) 用用“”或或“”填空:填空: 5341041 6534 034 4706. 5 006. 53219. 0 019. 0练习:练习:5341 (1) 用用“”或或“”填空:填空: 5341

15、041 6534 034 4706. 5 006. 53219. 0 019. 0练习:练习:5341 (1) 用用“”或或“”填空:填空: .)5 . 2()5 . 2(5432 ,(2) 比较大小:比较大小:(3) 已知下列不等式,试比较已知下列不等式,试比较m、n的大小:的大小:练习:练习:nm)32()32( nm1 . 11 . 1 (3) 已知下列不等式,试比较已知下列不等式,试比较m、n的大小:的大小:练习:练习:nm)32()32( nm1 . 11 . 1 )(nm (3) 已知下列不等式,试比较已知下列不等式,试比较m、n的大小:的大小:)(nm )(nm 练习:练习:nm)32()32( nm1 . 11 . 1 (3) 已知下列不等式,试比较已知下列不等式,试比较m、n的大小:的大小:)(nm (4) 比较下列各数的大小:比较下列各数的大小:.5 . 224 . 016 . 12 . 05 . 20, )(nm 练习:练习:nm)32()32( nm1 . 11 . 1 课课 堂堂 小小 结结1. 指数函数的概念;指数函数的概念;2. 指数函数的图象和性质指数函数的图象和性质1阅读教材阅读教材P.54-P.58;2习案习案作业十七作业十七.课课 后后 作作 业业

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 小学资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁