113多边形及其内角和(1).ppt

上传人:gsy****95 文档编号:17926856 上传时间:2022-05-27 格式:PPT 页数:29 大小:1.15MB
返回 下载 相关 举报
113多边形及其内角和(1).ppt_第1页
第1页 / 共29页
113多边形及其内角和(1).ppt_第2页
第2页 / 共29页
点击查看更多>>
资源描述

《113多边形及其内角和(1).ppt》由会员分享,可在线阅读,更多相关《113多边形及其内角和(1).ppt(29页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、八年级八年级 上册上册11.3 多边形及其内角和多边形及其内角和 (第(第1课时)课时)创设情境,导入新知创设情境,导入新知问题你能从图中想象出几个由一些线段围成的图问题你能从图中想象出几个由一些线段围成的图 形吗?形吗?创设情境,导入新知创设情境,导入新知多边形的定义:多边形的定义: 在平面内,由一些线段首尾顺次相接组成的封闭图在平面内,由一些线段首尾顺次相接组成的封闭图形叫做多边形形叫做多边形. .创设情境,导入新知创设情境,导入新知如图,从五边形如图,从五边形ABCDE 的顶点的顶点A 出发共有几条对出发共有几条对 角线?角线?ABCDE凸四边形凸四边形创设情境,导入新知创设情境,导入新

2、知观察你能说出这两个图形的异同点吗?观察你能说出这两个图形的异同点吗?ABCDBDCA创设情境,导入新知创设情境,导入新知想一想正方形的边、角有什么特点?想一想正方形的边、角有什么特点?各个角都相等,各条边都相等的多边形叫做正多边形各个角都相等,各条边都相等的多边形叫做正多边形回忆长方形、正方形的内角和等于回忆长方形、正方形的内角和等于_._.360创设情境,导入新知创设情境,导入新知思考任意一个四边形的内角和是否也等于思考任意一个四边形的内角和是否也等于360 呢?呢?动手操作,探究新知动手操作,探究新知探究你能利用三角形内角和定理证明你的结论探究你能利用三角形内角和定理证明你的结论吗?吗?

3、证明:证明:连接连接AC, BAD + +B + +BCD + +D = =(BAC + +BCA + +B) + + (DAC + +DCA + +D),= = 180 + + 180 = = 360 ABCD动手操作,探究新知动手操作,探究新知探究你能利用三角形内角和定理证明你的结论探究你能利用三角形内角和定理证明你的结论 吗?吗?从四边形的一个顶点出发,从四边形的一个顶点出发,可以作可以作_条对角线,它们将条对角线,它们将四边形分为四边形分为个三角形,个三角形,四边形的内角和等于四边形的内角和等于180_=_=122360ABCDABCDE动手操作,探究新知动手操作,探究新知探究类比前面

4、的过程,你能探索五边形的内角和探究类比前面的过程,你能探索五边形的内角和 吗?六边形呢?吗?六边形呢?如图,从五边形的一个顶点如图,从五边形的一个顶点出发,可以作出发,可以作条对角线,它条对角线,它们将五边形分为们将五边形分为_个三角形,个三角形,五边形的内角和等于五边形的内角和等于 180= =233540动手操作,探究新知动手操作,探究新知如图,从六边形的一个顶点出发,可以作如图,从六边形的一个顶点出发,可以作_条条 对角线,它们将六边形分为对角线,它们将六边形分为_个三角形,六边形的个三角形,六边形的 内角和等于内角和等于180_=_=_344720CABDEF从从n 边形的一个顶点出发

5、,可以作(边形的一个顶点出发,可以作(n - -3)条对角)条对角线,它们将线,它们将n 边形分为(边形分为(n - -2)个三角形,这()个三角形,这(n - -2)个三角形的内角和就是个三角形的内角和就是n 边形的边形的内角内角和,所以和,所以,n 边形边形的内角和等于(的内角和等于(n - -2)180归纳总结,获得新知归纳总结,获得新知思考你能从四边形、五边形、六边形的内角和的思考你能从四边形、五边形、六边形的内角和的 研究过程获得启发,发现多边形的内角和与边数的关系研究过程获得启发,发现多边形的内角和与边数的关系 吗?吗?能证明你发现的结论吗?能证明你发现的结论吗?n 边形边形六边形

6、六边形五边形五边形四边形四边形三角形三角形多边形内角和多边形内角和分割出三角分割出三角形的个数形的个数从多边形的一个顶点从多边形的一个顶点引出的对角线条数引出的对角线条数图形图形边数边数归纳总结,梳理新知归纳总结,梳理新知03 -3 = =4 -3 = =5 -3 = =6 -3 = =n -3 1233 -2 = = 14 -2 = = 25 -2 = = 3 6 -2 = = 4 n -2 ( n -2 )180180360 5407201 4408动脑思考,例题解析动脑思考,例题解析 例例1 填空:填空:(1)十边形的内角和为)十边形的内角和为 度度(2)已知一个多边形的内角和为)已知一

7、个多边形的内角和为1 080,则它的边数,则它的边数 为为_解:解:如图,四边形如图,四边形ABCD 中中, A + +C = =180 A + +B + +C + +D = =(4 - 2)180 =360,B + +D = =360- -(A + + C) = =360- 180 = =180 动脑思考,例题解析动脑思考,例题解析例例2如果一个四边形的一组对角互补,那么另一如果一个四边形的一组对角互补,那么另一组对角有什么关系?组对角有什么关系?ABCD如果四边形的一组对角互补,那么另一组对角也互补如果四边形的一组对角互补,那么另一组对角也互补. .(1)本节课学习了哪些主要内容?)本节课

8、学习了哪些主要内容? (2)我们是怎样得到多边形内角和公式的?)我们是怎样得到多边形内角和公式的?(3)在探究多边形内角和公式中,连接对角线起到)在探究多边形内角和公式中,连接对角线起到 什么作用?什么作用?课堂小结课堂小结 教科书习题教科书习题11. .3第第1、2、4、5题题布置作业布置作业问题问题1我们知道,三角形的内角和是我们知道,三角形的内角和是180,三,三 角形的外角和是角形的外角和是360得出三角形的外角和是得出三角形的外角和是360有多种方法有多种方法如图,你能说说怎样由外角与相邻内角如图,你能说说怎样由外角与相邻内角 互补的关系得出这个结论吗?互补的关系得出这个结论吗?探索

9、四边形、五边形、六边形的外角和探索四边形、五边形、六边形的外角和BCDEF123探索四边形、五边形、六边形的外角和探索四边形、五边形、六边形的外角和由由 1 + +BAE = =180,2 + +CBF = =180, 3 + +ACD = =180, 得得 1 + +2 + +3 + +BAE + +CBF + +ACD = =540 由由 1 + + 2 + + 3 = = 180,得得 BAE + +CBF + +ACD = = 540 - - 180 = = 360BCDEF123问题问题2如图,你能仿照上面的方法求四边形的外如图,你能仿照上面的方法求四边形的外 角和吗?角和吗?探索四

10、边形、五边形、六边形的外角和探索四边形、五边形、六边形的外角和BC123D4由由 BAD + +1 = =180, ABC + +2 = =180, BCD + +3 = =180, ADC + +4 = =180,得得BAD + + 1 + + ABC + +2 + +BCD + +3 + +ADC + +4 = =1804由由BAD + +ABC + +BCD + +ADC = =1802,得得1 + +2 + +3 + +4 = =1804 - - 1802 = =360探索四边形、五边形、六边形的外角和探索四边形、五边形、六边形的外角和问题问题3五边形的外角和等于多少度?六边形呢?五边

11、形的外角和等于多少度?六边形呢? 仿照上面的方法试一试仿照上面的方法试一试类比求三角形、四边形的外角和的方法求出五边类比求三角形、四边形的外角和的方法求出五边形的外角和是形的外角和是360,六边形的外角和是,六边形的外角和是360(解答(解答过程略)过程略)探索探索n 边形的外角和边形的外角和问题问题4 你能仿照上面的方法求你能仿照上面的方法求n 边形(边形(n 是不小是不小 于于3 的任意整数)的外角和吗?的任意整数)的外角和吗?因为因为n 边形的每个内角与它相邻的外角是邻补角,边形的每个内角与它相邻的外角是邻补角,它们的和是它们的和是180,所以,所以n 边形内角和加外角和等于边形内角和加

12、外角和等于 n 180,所以,所以, n 边形的外角和为:边形的外角和为: n 180- -(n - -2) 180= = 360 任意多边形的外角和等于任意多边形的外角和等于360探索探索n 边形的外角和边形的外角和我们也可以在问题我们也可以在问题4 的基础上这样理解多边形外角的基础上这样理解多边形外角 和等于和等于360如图,从多边形的一如图,从多边形的一个顶点个顶点A 出发,沿多边形出发,沿多边形的各边走过各顶点,再回的各边走过各顶点,再回到点到点A,然后转向出发的,然后转向出发的方向方向A探索探索n 边形的外角和边形的外角和我们也可以在问题我们也可以在问题4 的基础上这样理解多边形外角

13、的基础上这样理解多边形外角 和等于和等于360在行程中转过的各个在行程中转过的各个角的和,就是多边形的外角的和,就是多边形的外角和由于走了一周,所角和由于走了一周,所转过的各个角的和等于一转过的各个角的和等于一个周角,所以个周角,所以多边形外角多边形外角和等于和等于360A巩固多边形外角和公式巩固多边形外角和公式解:解:设这个多边形为设这个多边形为 n 边形,边形,根据题意,可列方程根据题意,可列方程 ( n - -2)180= =3360 解得解得n = =8 答:答:它是八边形它是八边形例例1 一个多边形的内角和等于它的外角和的一个多边形的内角和等于它的外角和的3 倍,倍,它是几边形?它是

14、几边形?四边形四边形 课堂练习课堂练习练习练习1一个多边形的内角和与外角和相等,它是一个多边形的内角和与外角和相等,它是 几边形?几边形?解:解:不存在不存在理由:理由:如果存在这样的多边形,设它的一个外角如果存在这样的多边形,设它的一个外角 为为x ,则对应的内角为,则对应的内角为180- -x ,15于是于是 x = =180- - x,解得,解得x = =150. .练习练习2是否存在一个多边形,它的每个内角都等是否存在一个多边形,它的每个内角都等于相邻外角的于相邻外角的 ?为什么?为什么?15这个多边形的边数为:这个多边形的边数为:360150= =2.4,而边数,而边数 应是整数,因此不存在这样的多边形应是整数,因此不存在这样的多边形课堂练习课堂练习课堂小结课堂小结(1)本节课学习了哪些主要内容?)本节课学习了哪些主要内容?(2)我们是怎样得到)我们是怎样得到“多边形外角和等于多边形外角和等于360”这这 一结论的?一结论的?布置作业布置作业教科书习题教科书习题11. .3第第6题题

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 初中资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁