《碳纤维复合材料的再利用.docx》由会员分享,可在线阅读,更多相关《碳纤维复合材料的再利用.docx(8页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、碳纤维复合材料的再利用(新材料产业杂志)2014年第八期一、碳纤维复合材料的回收方法1.高温热解法热解法是当今唯一已经实现商业化运营的碳纤维加强复合材料的回收方法,这种工艺是在高温下使复合材料进行降解,以得到外表干净的碳纤维,同时还能够回收部分有机液体燃料。日本在福冈县兴建的中试厂,每年可处理碳纤维复合材料废弃物60t。意大利的Karborek等开发了一种在加热经过中碳纤维不会被碳化的工艺技术,可得到的比原始纤维长度较短的碳纤维4。从2003年,英国的MilledCarbonFiberLtd.开场回收加工碳纤维复合材料,是全球首家商业运营的专业回收公司。他们利用一套长达37m的热分解设备,每年
2、大约可处理2000t的废弃碳纤维复合材料,所生产的再生碳纤维的产量为1200t。其处理方法是在无氧状态下加热碳纤维复合材料废弃物,保持温度在400500之间,得到的清洁碳纤维可具有90%95%原始纤维的力学性能,同时分解出的热解气或热解油可以用作热分解的加热能量5。美国AdherentTechnologiesInc(ATI)发明了一种低温、低压的碳纤维复合材料热分解工艺,检测表明,用这种方法回收并处理后碳纤维的外表基本上没有遭到损伤,碳纤维强度比原始纤维降低约为9%左右6。丹麦的ReFiber公司通过在无氧环境条件下,在温度为500的旋转炉中将碳纤维复合材料气化,成功地用高温热解法回收了复合材
3、料风机叶片。德国的KarlMeyer再生材料公司开发的一种在加热炉中通入保护气体用以隔绝氧气的新工艺,可使碳纤维复合材料分解后碳纤维基本没有遭到损伤。在这项工艺的研究中,该公司得到了陶氏化学公司和诸多研究所的技术支持和帮助,目前研制成功的试验装置已经正式投入了营运7。值得注意的是,采用高温热解法固然能够得到比拟干净、长度较短的碳纤维,同时分解的复合材料的产物还可用作燃料或其他用处,但是碳纤维由于遭到高温和外表氧化等作用,碳纤维的力学性能降低的幅度比拟大,这将使碳纤维的再利用遭到一定的影响。2.流化床热分解法流化床热分解法是一种采用高温的空气热流对碳纤维复合材料进行高温热分解的碳纤维回收方法,通
4、常这种工艺还采用旋风分离器来获得填料颗粒和外表干净的碳纤维。英国诺丁汉大学对于流化床热分解工艺方法进行了系统研究,结果表明这种方法十分适用于那些含有其他混合物及污染物碳纤维复合材料报废零部件的回收和利用8。Jiang等研究了在流化温度500、流化速率1m/s、流化时间10min试验条件下得到回收纤维的外表特征,外表分析表明,碳纤维原始外表上的羟基(-OH)转变为氧化程度更高些的羰基(-C=O和羧基-COOH),但其外表的氧/碳不变,而且碳纤维外表这种变化不影响回收纤维和环氧树脂之间的界面剪切强度9。Yip等用温度450的流化热流,其速率为lm/s、流化床上砂粒的平均粒度为0.85mm的条件下,
5、对碳纤维复合材料进行热分解试验,回收得到的碳纤维长度为5.99.5mm。试验表明,回收纤维的拉伸强度约为原纤维的75%,而弹性模量基本上没有变化,因此回收得到的碳纤维可部分或全部取代原始短切碳纤维;并且原始碳纤维长度越长,回收得到的碳纤维的长度也越长10。大量的试验研究结果表明,流化床热分解造成碳纤维拉伸强度降低的主要影响因素是砂粒对纤维外表由于摩擦作用造成了一定的损伤,而且碳纤维与旋风分离器壁的摩擦也造成了碳纤维外表的毁坏。因而,固然用流化床分解法回收可得到比拟干净的碳纤维,但由于这种工艺受高温、砂粒磨损等影响,导致了碳纤维长度变短和碳纤维力学性能下降,因此也将影响所回收碳纤维的实际应用范围
6、。3.超/亚临界流体法当液体的温度及压力处于临界点或临界点的附近时,液体的相对密度、溶解度、热容量、介电常数及化学活性等各种性质都将会发生急剧的变化,进而使液体具有很高的活性、极强的溶解性、特异的流动性、浸透性、扩散性等性质,人们正是利用超/亚临界液体的这些特性,利用它们具有对于高分子材料的独特溶解性能来分解碳纤维复合材料,在等待能最大限度地保留碳纤维的原始性能的前提下,获得到干净的碳纤维。PineroHemanzR等研究了在超临界水中碳纤维加强环氧树脂复合材料的分解经过。试验表明,在673K、28MPa下经30min反响,环氧树脂的分解率为79.3,当参加氢氧化钾KOH催化剂,环氧树脂的分解
7、率到达95.3,而且所得到的碳纤维的拉伸强度能够保持为原始纤维的9098%11。XiuFR等在在固体与液体比例为110130g/mL的条件下,经过在温度300420时分别反响30120min后,研究了废弃印刷电路板在超临界甲醇中的分解机理。试验结果分析表明,上述条件下分解的主要产物为含苯酚和甲基苯酚衍生物,并且发现当反响的温度提高时,甲基苯酚衍生物的含量有所增加12。Liu等系统地研究了温度、压力、时间、催化剂及树脂与水的比例这些因素对于复合材料分解的影响,表明原材料与水的比例对环氧树脂的分解影响不大,而对于分解影响比拟大的因素是分解反响的温度、时间和压力。同时,试验结果还表明,当原料比为1g
8、复合材料5mL水时,在温度为290、经过75min反响后,环氧树脂的分解率可高到达100%13。Bai等研究了在301MPa和44010条件下,氧化的超临界水对碳纤维加强环氧树脂的分解经过,结果表明在树脂的分解率为85%时,碳纤维的外表上仍然有少量的环氧树脂存在;而当树脂的分解率到达96%时,在碳纤维的外表上已经基本上没有树脂的残留。所获得的碳纤维力学性能测试表明,随着树脂分解率增加,碳纤维的拉伸强度也进一步下降,分析以为这是由于回收的碳纤维的外表发生了过度氧化所致14。日本的Okajima等在400、20MPa、45min的试验条件下,用2.5%碳酸钾(KCO3)作催化剂,在超临界状态下环氧
9、树脂的分解率为70.9%,而且得到的碳纤维的拉伸强度比原始纤维下降了15%15。英国诺丁汉大学的Pickering研究团队在超临界状态下研究了水、二氧化碳,甲醇、乙醇、丙醇和丙酮等多种溶剂对于碳纤维复合材料的分解作用,结果表明丙醇的溶解作用最好。试验结果表明,用超临界丙醇回收的碳纤维的拉伸强度和刚度的是原始纤维99%;同时,研究还表明,甲醇和乙醇对聚酯类树脂的溶解效果比拟好,而对环氧树脂的溶解效果比拟差,而丙醇可很好地分解环氧树脂复合材料16。我国哈尔滨工业大学的白永平等在超临界水中通过添加氧气,使分解速度大大提高,而且回收得到的碳纤维的强度几乎没有下降17。二、CFRP的回收存在的主要问题由
10、于热固性塑料经过固化处理后,其内部交联成一种网状构造的稳定状态,因此具有了不溶于各种溶剂,在加热经过中也不会熔化的特性,长期放置或掩埋也不会分解。因而,热固性复合材料废弃物的回收早在20世纪90年代初就已经遭到学术界和工业界的高度关注,然而到目前为止,固然有一些工艺和设备已经投入生产应用,但大部分的研究还处于试验阶段。从国内外目前碳纤维回收技术来看,碳纤维复合材料的回收原料主要以生产废料和损坏或淘汰的复合材料零部件等,因此对于不同种类的碳纤维复合材料废料分类回收还没有系统化;当前大量采用的热融化树脂制取碳纤维丝束,导致碳纤维性能大大降低,其性能和价格在市场上没有竞争力;其他一些方法固然可将碳纤
11、维从复合材料中分离出来,但由于纤维变短和性能下降,同时还会产生环境污染,因此还有待进一步研究与完善18。近年来,各工业大国都在进行碳纤维复合材料废弃物的回收与再利用研究,以开发出高效、经济和可行的碳纤维回收利用技术,主要研究集中在粉碎碳纤维加强塑料、热分解碳纤维复合材料、催化分解碳纤维复合材料、流化床回收碳纤维复合材料等回收工艺技术和再利用技术。如康隆(Cannon)公司介入了欧洲一个碳纤维回收再循环利用的项目,用回收的碳纤维绒毛或碳纤维毡加工复合材料部件,由于这些回收再利用碳纤维大约是原生材料价格的一半左右,而且其力学性能可到达全用新碳纤维制造部件的85%,因此经济效益非常可观。近期,德国的
12、KarlMeyer再生材料公司在特殊的加热炉中采用保护气体的装置回收碳纤维,所得到的碳纤维在外观上与新碳纤维差异不很大,但纤维的长度比拟短,而且强度也有所下降,由于其价格比新碳纤维低廉,因此能够用于飞机内饰或其他的复合材料部件。另据报道,波音787梦想飞机将用50%碳纤维材料制造,宝马2款新车型的客舱用碳纤维制成,为此2公司签订了碳纤维复合材料回收利用研究的技术协议。再如,美国诺丁汉大学和波音公司计划每年投资100万美元,共同研究所有复合材料回收利用技术,主要进行碳纤维回收工艺研究经过、回收碳纤维重新应用等19。但到目前为止,这些开发工作还没有进入本质性的研制阶段,因此真正实现产业化回收和利用
13、还尚需时日。碳纤维复合材料的回收和再利用具有多方面的经济效益,碳纤维回收和再利用不仅能够实现高价值材料的再利用,而且碳纤维复合材料部件回收和再利用可大大减少能源消耗和环境污染。但是,目前碳纤维复合材料回收和再利用仍面临着很多问题,如碳纤维复合材料废弃物的收集和分类比拟困难;废弃物回收和再利用的工艺技术还不特别成熟,大多数新研制的工艺技术仍停留在实验室阶段,最终实现商业化生产还需要做很多工作;目前固然已建有回收碳纤维复合材料的公司并可生产再生碳纤维,但再生碳纤维的利用还遭到各种因素的限制,如其力学性能不稳定就难以为用户接受,也难以在要求性能较高的零部件上应用。三、结语目前,碳纤维复合材料已经成为
14、军工、能源、交通、化工、电力等行业中必不可少的新型构造和功能材料,十分是随着我国航空工业、汽车工业和风电产业的高速发展,碳纤维复合材料的应用将越来越广泛,其废弃物的回收和再利用将会成为必然要面临的重要问题。所以研究和开发碳纤维加强复合材料高效的回收利用技术,对于复合材料产业的发展将会具有特别重要的作用,而且对于保护环境和经济发展也将有非常重要的影响。因而,必须从战略层面上高度重视碳纤维复合材料的回收与再利用,十分是要注重基础技术研究的超前性,为此就应该严密跟踪国外研究的最新成果,并结合我国的实际情况,研制出愈加经济、实用的回收和再利用方法,为我国碳纤维复合材料产业健康、可持续的发展打下坚实的技术基础。另外,在加强对碳纤维回收方法研究的同时,还应根据国内的市场需求,进一步加强引导,不断扩大回收利用碳纤维的应用领域并提高回收利用碳纤维的使用比例。为此,建议有关部门加强碳纤维复合材料回收利用相关法律的制定和宣传力度;大力开发和研究碳纤维复合材料废弃物的回收处理和再利用技术,并将其列入国家的发展计划,设立专门的研究机构和专题,积极支持高校和研究单位开展相关的研究,以期大幅度提高我国碳纤维循环利用的总体水平。