《金属外表处理废水深度处理与回用技术.docx》由会员分享,可在线阅读,更多相关《金属外表处理废水深度处理与回用技术.docx(7页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、金属外表处理废水深度处理与回用技术 摘要金属外表处理废水中存在大量的有毒有害物质,其中含有大量重金属,直接排放将严重污染环境。同时随着两高司法解释的出台,降低了金属外表处理企业的环境犯罪入罪门槛,为降低重金属排放浓度,在一定程度上减少法律风险,企业施行废水深度处理与回用势在必行,本文主要对金属外表处理废水深度处理与回用技术对目前的一些方法进行阐述。关键词废水;深度处理;回用技术1金属外表处理废水的种类及危害1.1种类根据金属外表处理种类的不同,金属外表处理废水主要有:(1)电镀废水电镀生产经过中的废水,包括前处理废水、电镀漂洗废水、镀后钝化处理废水以及退镀废液等。(2)阳极氧化废水铝、镁合金阳
2、极氧化产生的废水,主要包括除油、酸腐蚀、碱腐蚀、酸抛光、氧化、电解、着色、染色、封闭产生的生产废水。(3)涂装前处理废水涂装前工件预处理废水,包括除油、酸洗除锈、外表调整、磷化等。(4)电泳涂装废水水溶性电泳生产经过中产生的废水。1.2危害金属外表处理废水中含有重金属、酸、碱等,其中重金属进入环境或生态系统后将不被分解并存留、积累和迁移,造成危害。重金属可在藻类和底泥中积累,被鱼和贝体表吸附,产生食物链浓缩,进而造成公害。同时,重金属进入人体后积累并好过一定量后,将使人体产生各类中毒反响,影响人体健康,甚至危及生命。同时,金属外表处理废水中的氮、磷等进入水体将会引发水中硅藻、蓝藻、绿藻大量繁衍
3、,导致水肿溶解氧减少,化学耗氧量增加,进而导致水体“死亡,进而使水体质量恶化,导致鱼类死亡。据不完全统计,我国金属外表处理废水中单电镀废水等排放量已超40亿吨,日趋严重的水污染不仅加剧了水资源短缺的矛盾,而且在今后一定时期内长期存在并难以消除。为此,金属外表处理企业必须对所排放的废水深度处理并回用,降低排放总量,减少环境负荷。2目前深度处理及中水回用方法目前,在日常生产中主要利用膜过滤进行深度处理及中水回用。膜技术是21世纪水处理领域的关键技术,也是近年来水处理领域的研究热门。膜分离技术能够完成其他过滤不能完成的任务,能够去除更细小的杂质,可去除溶解态的有机物和无机物。目前常用的膜技术主要包括
4、利用电位差的电渗析、倒极电渗析和利用压力差的膜法,下面着重介绍目前较为常用的利用压力差的膜法处理技术,该处理技术主要包括微滤、超滤、纳滤和反浸透。2.1超滤超滤是一种加压膜分离技术,即在一定的压力下,被分离的溶液一定的流速沿着超滤膜外表流动,溶液中的溶剂和低分子量物质、无机离子,从高压侧头过超滤膜进入低压侧,并作为滤液排出;而溶液中高分子物质、胶体微粒及微生物等被超滤膜截留,溶液被浓缩并以浓缩液形式排出。超滤膜的孔径在0.05um到1nm之间,主要用于截留去除水肿的悬浮物、胶体、微粒、细菌等大分子物质。超滤虽能耗低、生产周期短,运行费用低,对电泳涂漆废水处理中可净化电泳漆的槽液,使漆液中的无机
5、盐头过超滤膜,把漆料截留下来,返回电泳槽重新使用。因而被国内外很多工厂采用。2.2反浸透反浸透又称逆浸透,是一种以压力差为推动力,从溶液中分离出溶剂的膜分离操作。目前,反浸透膜的头过机理尚未见有一致公认的解释,其中以选择性吸着-毛细管流机理常被引用。该理论以吉布斯吸附式为根据,以为膜外表由于亲水性原因,能选择媳妇水分子而排挤盐分。在施加压力作用下,纯水层不断通过毛细管流过反浸透膜,当其中的孔隙为纯水层厚度的一倍是,可到达理性的脱盐效果。反浸透技术在重金属废水处理中应用较早,主要大规模用于镀镍、铬、锌漂洗水和混合重金属废水的处理。反浸透具有无相态变化、常温操作、设备简单、效益高、能耗少等优点,但
6、需要高压设备,且膜面易发生污染,稳定性、耐药性、耐热性、耐溶剂能力有限,且单独的膜分离技术功能有限,需与其他分离技术连用。2.3微滤微滤又称微孔过滤,属于精细过滤,是以多孔膜为过滤介质,在0.10.3MPa的压力推动下,截留溶液中的沙砾、淤泥、粘土等颗粒和贾第虫和一些喜剧等,而大量溶剂、小分子及少量大分子溶质都能头过膜等分离经过,微滤等操作经过分为死端过滤和错流过滤两种形式。目前主要应用于食品饮料、医药卫生、电子、化工、环境监测等领域,在金属外表处理废水治理中应用相对较少。2.4纳滤纳滤是近十几年发展起来的,分离需要压力一般为0.52.0MPa,比用反浸透膜到达同样的浸透通量所必需是假的压差低
7、15MPa,根据操作压力和分离界线,能够定性将纳滤排在超滤和反浸透之间,因而纳滤也成低压反浸透。纳滤的分离机理目前仍处于研究阶段,不太成熟,技术原理近似机械筛分,但纳滤膜本身带有电荷性,这是他在很低压力下仍具有较高脱盐性能和截留分子量为数百的膜可以脱除无机盐的重要原因。目前越来越广泛应用于电子、食品和医药等行业,在金属外表处理废水治理中应用相对较少。3膜分离技术存在的问题及对策在用膜技术处理水的应用经过中,产生膜的污染在所难免。通常以为膜污染主要由凝胶层的构成、膜孔堵塞、浓差极化和膜孔吸附这4种原因引起。3.1减少膜孔堵塞及凝胶层的构成减少膜孔堵塞及凝胶层比拟有效的方法是,改善膜外表流动条件或
8、者采用化学清洗。无机物结垢源于水化学变化造成金属氢氧化物与碳酸盐快速沉淀在膜外表或膜内,颗粒结垢源于进水中的悬浮物或胶体。此类结垢可通过水力学方式解决,即通过空气吹扫、反洗或者添加流化介质使水体及介质成流化态。流化态的介质能够冲刷膜外表减少滤饼层的沉积进而缓解膜结垢。生物结垢源于生物膜的构成,一旦细菌粘附在膜上,它们就会繁衍并产生细胞外聚合物质,后者发展为粘性凝胶体。有机物结垢在处理含有自然有机物质的地表水时非常普遍。恢复膜透过性的最有效的方式是通过化学清洗,通常被叫做原位清洗工艺(CIP)17。3.2减小浓差极化减小浓差极化主要是改善膜外表流动条件:(1)一种方法是通过优化和改变膜元件及膜系
9、统构造设计,如在卷式膜组建中加设挡板网栅突起物等阻碍物作为湍流促进器,设计弯曲流道等(2)另一种方法是在膜分离的经过中采取一定的操作策略,如降低料液浓度,参加颗粒物或气泡,降低压力或采用脉冲压力或流速等方法。3.3减少膜孔吸附“维持高膜通量(EFM)的策略,能够有效提高膜通量,尽可能长时间保持膜的清洁,能够最大效率利用膜面积和孔隙率。维持高通量策略实际上是对膜系统自动化的化学清洗经过,可根据水质智能选择化学清洗剂。典型工艺包括一定浓度化学药剂对膜进行充满浸泡或循环,通常为1530min,然后排放化学清洗剂进水冲洗。还有通过溶液预处理、酶制剂清洗、工艺操作条件优化、膜面改性等方法用于减少膜孔吸附
10、。膜外表改性方法是通过将各种化学或物理方法,以物理吸附或化学连接的方式,将有机聚合物或者其他化合物固定在膜的外表或者孔隙构造中,以减轻膜面由于污染物沉积而产生的膜污染现象,进而改变膜性能3。常用的改性方法有:等离子体改性、共混改性、辐射改性和外表化学反响改性。4膜的应用前景与瞻望在废水处理中,膜技术在其中扮演重要的角色。膜分离技术作为绿色和节能的高科技技术,其高效、干净、节能的优点越来越为人们所认可。目前在膜分离技术的应用经过中亟需解决的主要是膜成本高、易被污染、结垢堵塞的问题。在将来的研究中,若能够降解决上述问题,同时加强膜污染机理研究,探索缓解膜污染的途径,完善膜分离技术,将会极大地推动工业和社会的进步,产生宏大的经济效益和社会效益。