遥感植被指数提取与农林业应用.docx

上传人:安*** 文档编号:17862652 上传时间:2022-05-26 格式:DOCX 页数:6 大小:19.48KB
返回 下载 相关 举报
遥感植被指数提取与农林业应用.docx_第1页
第1页 / 共6页
遥感植被指数提取与农林业应用.docx_第2页
第2页 / 共6页
点击查看更多>>
资源描述

《遥感植被指数提取与农林业应用.docx》由会员分享,可在线阅读,更多相关《遥感植被指数提取与农林业应用.docx(6页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、遥感植被指数提取与农林业应用1数码照片作为遥感影像的预处理1.1全景图拼接近地遥感影像拼接通常无需借助地面控制点,只需获得影像匹配点便可直接拼接生成全景图。使用这种粗糙的全景图能够检验遥感作业中能否出现漏拍,影像重叠度能否符合要求等。1.2空中三角测量对区域网进行空中三角测量,获得控制点和检查点的精度,进而对近地遥感作业所得数据精度进行评估。必要时,还能够通过提高地面控制点数量和精度来提高全景图平面坐标和高程的准确性。1.3正射影像制作在以上工作基础上就能够进行正射影像的生成了。利用获取的方位数据和匹配点对影像进行处理,利用人机交互法得到研究区DEM,最终生成准确的正射影像。得到正射影像后,还

2、需抽取一定数量的地面控制点,比照其在屏幕上的坐标与实测坐标间的误差,对正射影像的精度进行评估12。实际应用中,因研究目的不一,区域范围各异,拍摄视角多变,以上各项处理步骤并不都是必需的。2基于数码照片可提取的遥感植被指数经预处理的GB色彩形式数码照片只要红绿蓝3个颜色通道;使用经过改造(即拆除相机内部红外滤光片并在镜头前加装可见光滤镜)或专用的红外相机还能再获取1个近红外通道在此基础上,构造植被指数就是用、G、B、NI4个波段进行数学变换,最大化植被信号,最小化非植被信号。由于GB图像为真彩色,因而仅用GB三通道构造的指数又被称为植被颜色指数(Colorindices)13。2.1比值植被指数

3、数码照片色相中绿色的比例已经能在一定程度上直观地反映区域植被的好坏绿色强度指数(Sgreen,Strengthofgreen),也即绿色的比例系数或色度坐标。因叶绿素对红光的强吸收和叶肉组织对近红外光的强反射,植被在和NI波段的光谱差异最显著。两者之比即比值植被指数(VI,atioveg-etationindex)能有效反映植物的这种特殊光谱响应特征。2.2差值植被指数与Sgreen不同,超绿指数(ExG,excessgreenindex)以差值的形式表征绿色在色相中的充裕度。ExG图像是天然近二值灰度图像,呈现明显的黑白效果,通过自动阀值分割易于完成二值化处理,区分出植被与非植被,是近年来使

4、用最多的颜色指数之一17。Woebbecke等18比照分析了ExG与r-b、g-b、(g-b)/(r-g)、HUE等植被指数对草地的识别能力,发现ExG效果最佳。它有很多改良型(MExG)。DVI的缺点是受土壤背景影响很大,会随土壤的含水量、有机质含量、外表粗糙度等,以及光照条件、植被盖度、作物排列方向的变化而变化。尤其是当植被过于浓密(盖度80%)时,它对植被的灵敏度会显著下降,因而只适用于植被发育早中期或低中覆盖度植被的检测。2.3归一化植被指数归一化差异植被指数(NDVI,Normalizeddifferencevegetationindex)可被视为VI的改良型。可见光波段的NDVI(

5、常记为NDI)通常基于和B波段的光谱差异进行构造。而利用和NI波段构造的NDVI愈加有效,能消除大部分与仪器定标、太阳角、地形、云阴影和大气条件有关的照度变化。WDVI通过为NI波段引入权重系数解决NDVI的数值饱和问题,指数与植被覆盖率的关系愈加线性,对作物LAI的灵敏度是NDVI的三倍以上。式中,a为作物近红外波段权重参数,常见农作物a值的取值范围为0.1,0.2。而转换植被指数(TVI,Transformedvegetationindex)是通过取平方根将近Poisson分布的NDVI数值转换为正态分布。2.4土壤修正植被指数由于拍摄距离近,拍摄时间机动,基于普通相机的近地遥感需要进行大

6、气修正的情况相对较少(相关指数从略);但为了降低土壤背景对植被指数的影响,土壤修正往往是必要的。土壤在和NI波段均有较高反射率,在-NI二维坐标系中,土壤光谱响应表现为一条斜线,称为土壤线。而植被的波段反射率低,在-NI坐标中位于土壤线左上方,不同植被与土壤亮度线的距离不同,可藉此被划分。式中,a为土壤线斜率,b为截距。在PVI基础上也发展出了一系列指数。它是NDVI和PVI的混合体,通过引入土壤亮度指数L,建立了一个描绘“土壤-植被系统的简单模型,改善了指数与LAI的线性关系。3相关指数在农林业中的应用领域通过以上分析能够看到,仅使用一台普通相机和一台红外相机4个波段的影像就足以提取到几乎所

7、有已知航空/卫星遥感植被指数(少数指数需略加改造),并实现绝大部分常规植被遥感所能够实现的功能。这些指数中,不仅包括NDVI等常规遥感植被指数,还包括Sgreen、ExG、ExG-MEx、VVI等针对GB形式照片发展而来的“颜色指数。假如需要,通过给相机加装不同波段的滤光片来截取特定光谱段的影像,提取高光谱遥感植被指数,如导数植被指数(DVI)、温度植被指数(Ts-VI)、生理反射植被指数(PI)等并绘制相关影像,理论上都是能够实现的。在此基础上足以实现,a.识别特定农林业遥感对象,提取相关空间信息。b.开展农林业资源调查、土地利用现状调查、农林生态环境调查监测等。c.建立指数与作物叶片色素、

8、纤维素、木质素、水分、氮含量和CO2通量等生理生化指标的相关性,开展作物长势监测和产量评估。d.指导精准农林业活动的施行,如精准灌溉、精准施肥、精准播种、精准除草、精准防治病虫害活动等。e.开展农林灾祸的遥感预警、监测和损失评估,例如病虫害、洪涝灾祸、火灾评估。f.监测植物物候变化,开展气候变化研究,提升农林业应对气候变化的能力。g.基于光谱变异假讲(SpectralVariationHypothesis)33建立典型生物群落光谱特征参量和光谱库,开展林业生物多样性的监测与评估等功能。4瞻望将来的农林业遥感应用将逐步构成“大、小、微卫星遥感+航空遥感+近地遥感+地面调查的复合形式,实现跨尺度、

9、跨平台、多时相、多传感器遥感信息的整合,使遥感技术的作用得到充分发挥。基于“多轴飞行器+普通相机的低成本、高分辨率近地遥感系统是对现有遥感体系的重要补充。纵观遥感植被指数发展史,绝大多数指数是随卫星遥感平台的发展在19701995年间被提出来的。相关领域在近年来并未有大的发展变化,这标志着相关理论和方法体系已相对成熟。反观硬件的发展,低价微型红外探测设备的缺失一直是阻碍植被遥感在平民中得以推广使用的重要限制因素。这方面,美国PublicLab组织2013年在Kickstarter众筹平台发起Infragram项目,提供了一套有红外和可见光双镜头的相机及配套的PC软件,支持假彩色合成和植被生理生化指标反演等功能,是植被遥感应用平民化的先驱者之一。2014年7月,美国Flir公司为iPhone6手机的FlirOne保护套是第一款供手机使用的消费级热力红外成像设备,其Lepton红外摄像机芯,比普通红外摄像机体积小34倍,轻20倍,并配备功能强大的图像处理APP。随着硬件成本的下降,红外成像技术必将全面进入手机、平板电脑和可穿戴电子设备等移动通讯平台。将来,利用这些平台即可实现各种植被指数的实时计算,并借助“移动互联网+WebGIS+云计算技术实现遥感信息的分享、分析与交互,在此基础上可构建出一种全新的低成本农林“微遥感技术体系,为遥感植被指数的推广应用提供多种可能。

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 考试试题 > 升学试题

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁