图像噪声与信息隐藏分辨研究.docx

上传人:安*** 文档编号:17843954 上传时间:2022-05-26 格式:DOCX 页数:5 大小:17.68KB
返回 下载 相关 举报
图像噪声与信息隐藏分辨研究.docx_第1页
第1页 / 共5页
图像噪声与信息隐藏分辨研究.docx_第2页
第2页 / 共5页
点击查看更多>>
资源描述

《图像噪声与信息隐藏分辨研究.docx》由会员分享,可在线阅读,更多相关《图像噪声与信息隐藏分辨研究.docx(5页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、图像噪声与信息隐藏分辨研究(计算机工程与科学杂志)2014年第六期1图像隐藏信息和加噪的检测分辨1.1图像差分直方图直方图是一种一阶的能够反映图像灰度分布的特征图。直方图特征是信号的一阶统计,它只能反映像素的总体分布,不能反映图像的局部特性,尤其是图像像素互相之间的关系。当直方图缺乏以描绘图像像素特征时,通过对直方图差值统计就能够反映相邻像素之间的互相关系,差分直方图特征就是这样能够反映图像像素之间互相关系的统计特征。图像差分直方图模型。原始载体图像和载密图像的差分直方图其外形轮廓并没有太大的差异,都能够用拉普拉斯分布模型很好地拟合,其差异在于形状因子有随着嵌入的机密消息长度的增加而增大的趋势

2、。其概率密度函数为:图像小波子带差分直方图模型。通过研究自然图像在同一小波子带中的系数特征,提出了小波系数的广义拉普拉斯分布,即广义高斯分布。模型的解析式为公式。对自然图像,形状参数的范围通常是,。图给出了的图像最细化垂直子带的直方图。能够看到,广义高斯分布模型能够很好地拟合子带系数的分布。对此模型进行引申,由于小波系数之间具有弱相关性,在某种条件下互相独立,因而对子带系数进行进一步的分解处理,将小波系数进行,的差分处理,可得到图像小波系数高频子带的统计分布,描绘其差分直方图,观察发现,其图形也符合拉普拉斯分布。图所示为图像小波系数高频子带差分直方图。1.2方差分析和最优阈值选择直观上,图像中

3、隐藏信息和添加噪声对图像表象的影响并无差异,为了分析出其中的差异,对图像作小波分解,然后得到分解后的三个子带系数,分别对每一子带进行直方图分析图,同时计算其差分直方图图,互相之间的差异如图所示,信息的嵌入率为,乘性噪声的方差为。从图中能够发现,图像经过隐藏信息后与图像经过加噪后的差分直方图方差与变化较大,因而能够通过利用小波系数高频子带系数的差分数值,计算图像隐藏信息和含噪后的均值和方差,利用方差,的大小差异来区分图像能否隐藏信息或含噪。实验表明,经过量化嵌入隐藏信息后图像的,值远远小于量化嵌入噪声信息的,值。因而,采用方差的大小,作为分辨图像隐藏信息和图像加噪的标准。通过计算图像小波变换高频

4、系数的差分值后,选取一个阈值,来确定图像能否含有噪声信息,即两幅图像的方差之差,则表明小波高频子带系数方差大的图像被噪声干扰,为含噪图像;否则是没有噪声干扰的隐藏信息或原始图像。假如阈值,选择过大,则将导致误检率增大,而假如阈值太小,则会造成虚警率过大。在此,采取如下的和详细应用相关的函数来确定阈值:2实验结果及分析为了验证算法的有效性,本实验中采用随机最末位嵌入方法。选择此方法的一个原因就是这些算法已经实现并且嵌入信息的分布近似能够用正态函数进行拟合。噪声的参加采用高斯白噪声,实验分为两部分:少量抽取图像观察实验结果。使用整个图像库进行实验。第部分典型实验:我们从图像数据库中选择了四幅大小的

5、标准灰度图像进行测试,如图所示。表列出了实验测试的结果混合表示图像经过隐藏后加噪,构成的图像既有隐藏的信息又含有噪声。隐藏的数据量分别为、;嵌入噪声为高斯乘性噪声,方差分别为、。第一行数据表示各图像处理后小波域高频带差分直方图的方差;第二行数据表示图像经过两种方法处理后的差值,从差值能够分析出,噪声的强度越大,图像高频子带系数的差分方差越大,在图像中表示出来就是峰值低,逐步地由拉普拉斯分布向正态分布过渡。第部分选择通用图像库进行实验,采用“图像库。这些图像为灰度图像,颜色位深度为位,包含有各种类型的图像,有颜色亮堂的、颜色缩减的以及暗色调的;此外,还有纹理以及边缘和直线等细节丰富的图像等。图像

6、库的大小为幅,采用嵌入和加噪方法分别进行后期处理。为了考察嵌入程度和噪声强度对检测性能的影响,我们嵌入信息的长度从到不等,噪声强度从方差为到不等。如图所示,“表示含噪图像的小波高频系数差分数组的方差,“表示隐藏信息图像的小波高频系数差分数组的方差。从图能够看出,隐藏信息的多少对方差影响不大,随着噪声嵌入量的增大,方差值不断增大;当嵌入噪声强度较小的时候,两者方差差值小,随后不断随着噪声的加大,差值变大。从图显示的图像库测试结果能够证明,我们所提出的方法估计结果较为准确。显然,嵌入信息以及原始图像中参加噪声越大,则所得出的差分值越大,因此越容易分辨出是隐藏信息图像还是加噪的图像。结果表示上述理论分析和实验测试一致。3结束语本文分析了图像噪声和隐藏信息图像的一些差分直方图特性,通过图像小波域的高频系数拟合建模,提出了一个小波域高频系数差分直方图模型,能有效分辨出两种图像的干扰。利用高频系数的统计值,计算其标准方差进行判别,实验结果表明了该方法的有效性。图像的小波域处理处于发展阶段,很多模型还需要不断完善,在图像处理的应用中不断改良,并完善其小波域模型是我们今后的主要工作。

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 考试试题 > 升学试题

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁