《开关电源在模拟量收集系统中的应用.docx》由会员分享,可在线阅读,更多相关《开关电源在模拟量收集系统中的应用.docx(8页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、开关电源在模拟量收集系统中的应用fenghy导语:本文介绍开关电源在模拟量收集系统中的应用,并对可能出现的一些问题进展分析。尽管在模拟量收集系统中,对ADC芯片等的供电一般建议最好不用开关电源,以防止其固有的纹波大、噪声等问题,但开关电源仍以其高效率、低价格等优点得到广泛应用,尤其是在工业控制等领域。本文介绍开关电源在模拟量收集系统中的应用,并对可能出现的一些问题进展分析。开关电源对ADC芯片工作的影响及解决方法电源对ADC芯片的影响,除了表达在电源抑制比PSRR参数上,还表如今,当ADC芯片对输入的模拟信号进展采样、保持、转换时,电源电压、参考地的变化,都会对ADC芯片内部采样电路、比拟器等
2、的工作产生影响,使得收集结果出现晃动。因此,一般ADC芯片十分是高精度ADC芯片,都建议最好用质量好的线性电源供电。假如采用开关电源,那么需要尽力防止它对ADC芯片产生影响。图1是一个典型的应用,其中模拟采样用的信号调理电路、ADC和现场模拟信号不隔离,ADC芯片和CPU电源互相隔离。CPU采用控制系统内部电源。而ADC的+5V电源是由+24V电源经过+24V到+5V电源变换而来的。图中左侧局部是典型的串联、降压非隔离型DC-DC变换器的原理框图。设计中,可以根据开关管的开关频率、+5V消耗电流、要求的输出纹波最大值,计算出电感L1、电容C1的适宜大小。为了分析出开关电源对ADC芯片的影响,这
3、里假设信号调理电路及ADC芯片正常运行的耗电是25mA/+5V,对于光耦局部,假如采用6N136、TLP521等三极管输出型的光耦,那么当CPU不启动ADC工作时,光耦全不导通,耗电小于1mA;当CPU启动ADC工作时,将有数据输出Dout、数据预备好Ready等信号经过光耦,光耦处于导通状态,为了到达比拟高的通讯速率,光耦总耗电需要25mA/+5V左右。这样,+5V负载电流将在2550mA之间往返变动。正常开关电源设计的输出电流应该2倍于最大负载电流,这里设为100mA,下面将要讲明负载电流的变化将极大影响+5V,进而影响ADC采样稳定性。开关电源的工作原理是,平时Q1的周期性开关动作,再经
4、过L1、C1,得到所需要的输出;而当输出+5V电压发生上升/下降超过一定限度如几十毫伏,经过采样、反应后,开关控制电路控制Q1的开关,使得输出电压向+5V回归。在+5V负载比拟恒定的情况下,输出+5V的最大纹波,可以根据采样反应电路工作原理比方MC34063是通过比拟器和锁存器来控制Q1的开关、开关频率等计算出来。但假如是图1中带光耦的情况,开关电源的输出不仅供应相对恒定的负载如信号调理电路、ADC芯片,而且还要供应光耦等数字局部电路,有可能发生最坏的情况是,当开关管Q1正处于上述稳定工作中的关断时刻,光耦忽然被ADC导通,此时L1、C1将要提供50mA的负载电流,而平时稳定工作中L1只提供2
5、5mA的电流,剩下电流只能从电容C1中获取,使得C1上的电压即+5V电平下降比拟大。这将持续半个开关周期,直到开关管Q1翻开。假如开关电源的开关频率是100KHz,而ADC芯片数据Dout的通讯频率也是100KHz左右,将引起输出+5V电压频繁波动,造成更大的输出纹波。在示波器上甚至能看到噪声反应在+24V输入上。上面只是理论分析的最坏情况,实际应用中,滤波电容等器件的非理想性、PCB布线等等,将使得电源纹波更大,ADC采样结果不稳定。有的微功率型隔离DC/DC,或如电荷泵器件,只有开关管的周期性开关动作,而没有上述采样、反应电路,输出更轻易受到负载不稳定的影响,使得ADC采样结果更不稳定。图
6、1:开关电源在模拟量收集系统中的典型应用图比拟好的解决方法1.设法降低开关电源的负载变化,由于固然目前开关电源的工作频率已到几百kHz以上,但开关电源的负载响应时间仍至少要几个s,低于目前大多ADC采样的速度。比方采用光耦6N137就比6N136好,由于6N137只是静态电流比拟大,而它需要的二极管导通电流小,使得电源的负载变化不会很大。或不把模拟+5V电源接到小功率的开关电源输出上,而接到其它功率比拟大的开关电源输出上,防止开关电源输出受到负载变动的影响。同样一个值得留意的问题是,不要使用ADC芯片的Ready、Dout、Din等引脚直接驱动光耦,最好通过光耦驱动电路,使得模拟和数字电源得到
7、很好地互相隔离,防止在光耦开关时,有大的电流越过ADC芯片。2.开关电源后加LDO等输出电压纹波小的器件,再供应信号调理电路、ADC芯片,保证模拟电路电源的稳定。3.假如在开关电源后加LC滤波,将LC滤波后的电源供应数字局部,此时应该针对不同的负载电流大小,选择相应的L、C数值,必要的时候,要通过一定的计算、仿真及试验来加以确定。电感、电容不能过大,否那么难以响应负载光耦开/关的变化。建议开关电源输出直接供应数字局部;同时经过LC滤波或RC滤波,再供应信号调理电路、ADC芯片。在采用LC滤波时,还需要留意LC的谐振频率要远远偏分开关电源工作频率。比方滤波RC电路的电阻R可以取10左右,电容取1
8、0F左右。4.其它常规的方法也十分重要,如信号调理电路、ADC芯片的电源和地,要同光耦等数字局部的电源和地分开走线,最后单点连接。或两者采用两个DC/DC电路分别给ADC芯片等模拟电路和光耦等数字电路供电。原因和上文分析一样,也是为了更好的防止数字、模拟之间电源的互相干扰。开关电源对运算放大器的影响及解决方法一般模拟量信号进入ADC芯片之前,要利用运算放大器进展信号调理,以提供必要的电平变换、滤波、ADC芯片驱动等等。运算放大器与ADC相接口时,轻易受到电源的影响,进而也影响ADC芯片收集的稳定。图2是运算放大器与ADC的典型接口图。图2:运算放大器与ADC的典型接口图大多ADC芯片内部的模拟
9、输入端都具有一个采样电容Cin,电阻R1对运放输出限流,数倍于采样电容的陶瓷电容C1使得开关SW合上的瞬间,通过C1迅速给采样电容Cin充电。R1、C1的详细数值,与运放的稳定性、建立时间、ADC采样时间、需要的采样精度有关。这里要指出的是,在上述经过中,运放的电源也会起很大的作用。在运放对电容充电期间,瞬间需要较大的电流,而开关电源的负载响应时间不够,将造成比拟大的电源纹波,影响运放的输出。比方采用C1=10Cin=250pF,那么当SW从别的通道假设为-5V切到AI0通道假设+5V时,Cin从-5V切换到C1上的电压+5V,C1迅速给Cin充电,最终电压为5V10-5V/114.09V,运
10、放输出要从5V变到4.09V,R1太小轻易带来运放输出稳定性问题,同时也会对运放输出电流带来冲击,影响电源电压。十分是在采用电荷泵给运放-VCC提供小的负电源时,电荷泵输出电压随负载增大而降低的特性使得效果更加明显。比拟发现,运放采用直流线性稳压电源时,12位的ADC收集结果很稳定,结果变动可达1LSB以下;相比之下,采用电荷泵器件时,假如电荷泵输出没有大的滤波,ADC收集结果晃动可达3LSB。假如增大R1为100时,C1=10Cin,不考虑运放输出电阻时,需要运放输出电流的最大值为54.09V/1009.1mA,小于一般运放的最大输出电流。但R1太大,将明显降低ADC所能收集到的信号频率,在
11、ADC对该通道“跟踪期间,运放无法完成对C1和Cin充电,使得该次采样与运放输入端电压相差较大,会造成谐波失真。解决方法除了前文描绘的以外,同时还可以采用以下方法:1.运放的正负电源对地除并接一个1022F大电容以减少电源纹波外,再并接一个0.11F的小陶瓷电容,以通过0.11F高频去耦电容的作用,防止负载电容的瞬间充电对电源的影响。效果类似于数字芯片电源和地之间加的去耦电容。2.增大图2中ADC前端电阻R1,减小运放的输出电流,能起到一定的滤波作用。当然R1大的话,将衰减通过运放的信号。开关电源对参考源的影响及解决方法有的ADC芯片要外部提供参考源,这时外部参考源的供电,也需要参照前文所述的
12、处理方法,采取在输入端加滤波等措施。同时留意,对连续逼近SAR型ADC芯片,如TLC2543芯片,采样、保持后的内部每次电压转换,都需要将收集电压和参考源的1/2、1/4、1/8等组合相比拟,以确定相应n位ADC结果的第n-1位、第n-2位等,参考源的分压是通过电容实现的。这样,对应转换每位均需要将参考源VREF通过开关接到相应分压电容上,对参考源而言,将看到一个变化的容性负载,进而产生了上文所讲的问题。假如ADC芯片内部没有参考源缓冲电路,而外部参考源的容性负载才能又不够时,需要在外部参考源输出端,串一个缓冲器,再通过一个RC电路接到ADC芯片的参考源输入端。其它处理方法,同上文所述,如在外部参考源的电源端,并接一个1022F大电容和一个0.11F的小陶瓷电容等。本文小结本文固然针对SAR型ADC进展分析、处理,但其应用原理,对各种ADC都有参考价值。仔细分析各个环节的工作原理,采取一定的对策,就能在模拟量收集系统中,使用廉价的开关电源,而又获得极佳的收集性能。