《高压变频器在油田注水泵上的应用_1.docx》由会员分享,可在线阅读,更多相关《高压变频器在油田注水泵上的应用_1.docx(8页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、高压变频器在油田注水泵上的应用注水泵是知足油田注水,保证地层压力的源设备,随着油田开采进入中后期,油田注水量也将逐年加大,注水耗电已占消费用电的19%、注水电费占总电费的16%,并呈逐年显上升趋势。在高压注水系统中,高压电机中大马拉小车的现象比拟普遍,注水泵泵压与注水管线干压之间存在较大的压差,必须靠控制泵出口高压回流阀门来保证注水管网的注水压力,这样既造成大量的电能被白白的消耗掉,同时又由于泵压较高,对机泵的运行,管道的使用特别不利。安装高压变频调速装置后,根据注水管网需要的压力进展参数设定,自动调节注水量,既可节约大量的电能又能降低机泵的损耗,对降低消费本钱有着特别积极的意义。辽河新三联注
2、水站投运一台型号为DFJ200-170AX11的注水泵,匹配电机型号为YB1800S2-2的6KV/1800KW异步电动机,采用直接驱动方式控制,离心泵流量通过控制出口阀门的开度进展调节,造成大量节流损失,离心泵及电动机运行在低效率工作区,能源浪费严重。目前月注水流量为183210m3,夏秋季节注水量相应降低,运行中离心泵实际泵压为16.5MPa,注水管网实际运行压力为12.5MPa,由于多泵注水施行并网运行,当注水管网压力升高到目前注水管网实际注水压力以上时,将造成高压注水量减少,无法知足油井注水需求,同时污水量大于注水量将造成污水外排。为此注水电机运行时必须靠调节离心泵出口高压回流阀门来控
3、制注水管网压力,以维持联网注程度衡。这样就造成泵压与管网干压平均压差到达4MPa以上,造成了大量的电能浪费。通过综合调研和考虑,我们选用了山东新风光电子公司JD-BP37-1800F型号的高压变频器,通过应用,该变频器有平安性能好,可靠性高,设计公道,易损件寿命长,启动性能好,降耗效果明显,安装、维护和保养都比拟方便。2、高压变频器的原理图1变频调速系统的构造JD-BP37系列高压变频调速系统的构造见图1,由移相变压器、功率单元和控制器组成。6KV/1800KW变频器共有24个功率单元,每8个功率单元串联构成一相。21功率单元电路图2单元构造每个功率单元构造上完全一致,可以互换,其电路构造见图
4、3.2,为根本的交-直-交单相逆变电路,整流侧为六支二极管实现三相全桥整流,通过对IGBT逆变桥进展正弦PWM控制,每个个功率单元完全一样,可以互换,这不但调试、维修方便,而且备份也特别经济,假设某一单元发生故障,该单元的输出端能自动短路而整机可以暂时降额工作,直到缓慢停顿运行。22输入侧构造输入侧由移相变压器给每个单元供电,每个功率单元都承受电机电流,1/8的相电压、1/24的输出功率。24个单元在变压器上都有自己独立的三相输入绕组。功率单元之间及变压器二次绕组之间互相绝缘。二次绕组采用延边三角形接法,目的是实现多重化,降低输入电流的谐波成分。24个二次绕组分成三相位组,互差20,构成18脉
5、冲整流方式;这种多级移相叠加的整流方式可以大大改善网侧的电流波形,使其负载下的网侧功率因数接近1,输入电流谐波成分低。实测输入电流总谐波成分小于5%。由于变压器副边绕组的独立性,使每个功率单元的主回路相对独立,类似常规低压变频器,便于采用现有的成熟技术。23控制器控制器核心由高速16位单片机和工控PC机协同运算来实现,精心设计的算法可以保证电机到达最优的运行性能。工控PC提供友好的全中文WINDOWS监控和操纵界面,同时可以实现远程监控和网络化控制。控制器用于柜体内开关信号的逻辑处理,以及与现场各种操纵信号和状态信号的协调,增强了系统的灵敏性。控制器及各控制单元板中采用8位单片机等大规模集成电
6、路和外表焊接技术,系统具有极高的可靠性。此外还有一个CPU,也是8位单片机,负责治理LED显示屏和键盘。另外,控制器与功率单元之间采用多通道光纤通讯技术,低压局部和高压局部完全可靠隔离,系统具有极高的平安性,同时具有很好的抗电磁干扰性能,并且各个功率单元的控制电源采用一个独立于高压系统的统一控制器,方便调试、维修、现场培训,增强了系统的可靠性。24控制电源控制器有一套独立于高压电源的供电体系,在不加高压的情况下,设备各点的波形与加高压情况根本相似,给整机可靠性、调试、培训带来了很大方便。图3独立控制电源系统3、现场情况和节能效果统计针对现场存在的问题,系统优化改造主要需解决两方面的问题:第一,
7、在知足系统配注水量的根底上尽可能减少排量损失;第二,在知足注水压力的前提下尽可能减少泵管压差,即减少压力损失。系统优化拟从动能和势能两方面同时入手,尽可能降低能耗、进步系统效率。3.1现场的系统构成图4现场系统构成系统闭环控制经过如下:由智能传感器对各运行注水泵进展实时数据监控和处理,即收集和传输注水泵、站的运行参数,如:泵的排量Q单、电机电流I、泵进、出口压力P泵,注水站出口干压P干、总排量Q总、平均单耗等,并将这些控制参数Q单、I、P泵,P干、Q总、与其期望值及泵本身的特性曲线进展比照和优化计算。其中,注水站干压和总流量是系统所需监测和控制的两个最主要参数。本系统中,一方面在泵出口管线上安
8、装一只高可靠性压力传感器,将实测的压力信号与系统的配注压力期望值相比,并将其差值送往经过参数调节器PID进展比例和积分运算,最后将输出结果送给可编程控制器PLC;另一方面在泵入口管线上安装一只流量计,用于监测系统实际总流量,将该值与系统配注量的差值再进展一次PID整定,最后将输出结果送给PLC。PLC根据所接收的两个PID整定信号,利用模糊推理的方法,在知足系统干压的前提下,系统及时自动调整高压变频器的输出频率进而控制变频泵的转速。由离心泵原理知,泵转速的变化可引起相应的排量变化,通过频率的变化以到达期望的排量值。通过上述闭环控制,使系统的实际压力和排量与系统的配注压力和配注量相接近。系统设计
9、为闭环控制系统,流量和压力为系统的两个主要参数,将系统实测的流量和压力信号与地质要求的流量和压力期望值进展双PID调节;通过模糊推理的方法自动寻优控制,根据推理结果,系统及时自动调整高压变频器的输出,并自动计算出变频器的最正确运行频率。3.2节电效果分析3.2.1由功率和转速的立方成比例:p1/p2n1/n23其中,n为机泵转速,p为输出功率可知,泵的功率变化与转速的三次方成正比,也就是讲,当泵的转速下降1个单位,那么泵的功率将以该单位的三次方的关系下降。而变频调速正式通过变频器改变电源的频率来控制泵的转速,这充分讲明变频调速是节能的最好方法。3.2.2系统效率进步,单耗降低系统通过高压变频装
10、置改造后,使各泵在高效区运行的前提下知足系统的注水量,有效进步了系统效率,降低系统单耗。据分析计算,系统改造后可实现注水单耗平均降低0.20.4kW/h,取平均值0.3kW/h,天天注水量平均为4100m3/d,每度电以0.5元计,那么一年可以节约电费为:41003650.30.5=22.4万元人民币3.2.3调整多余水量,节约电能天天平均注水量为4100m3/d,由于要求的注水量的波动较大有时需要注2600m3/d,有时又需要注5500m3/d且变化频繁一周或者几天一变。对该站施行高压变频改造,可根据站外要求的水量灵敏调整站内泵的运行,使之在知足系统压力要求的前提下尽可能与要求的注水量一致,
11、重大程度减少电能和水源的浪费。当要求注3600m3/d水时,泵的才能大于要求的水量,将多注1500m3/d;当要求注5500m3/d时,开1台泵水量不够,开2台泵将多注2220m3/d水,都将造成水源和电能的浪费。根据以上数据及站内运行情况推算,为知足配注量,天天平均多注水1600m3/d,系统单耗为7.1kW/h,按每度电电费为0.5元计,改造前每年约有150天水量处于不匹配状态,那么通过高压变频调节后年节电费为:16001507.10.5=85.2万元人民币3.3实际节电效果该变频器于2004年8月在新三联2#注水电机安装正式运行,使用变频器前后的耗电情况统计见下表:表1:2004年5月使
12、用变频器前的耗电情况由表1,表2可以看出,2#注水泵电机安装变频器前后的注水单耗从6.79下降到5.38,不考虑其它方面的影响:节电率=安装前耗电-安装后耗电/安装前耗电100=1244246-698215/1244246100=43.88考虑到注水量各方面条件的影响,实际的节电率与计算值有所不同,但根据现场的运行情况来看,不会有太大的出入,总体的节电效果不会改变的。4完毕语综上所书,JD-BP37序列高压变频器运行平稳,性能可靠,简便实用,节电效果明显,改善了工作人员的工作环境,启动无冲击电流,大大降低了维修费用进步了机组的使用寿命,安装使用后明显带来了比拟显著的经济效益,使用说明,JD-BP37系列高压变频用具有宏大的推广应用价值。