湿陷性黄土的成因、危害及处理措施研究.doc

上传人:豆**** 文档编号:17648762 上传时间:2022-05-25 格式:DOC 页数:10 大小:590.50KB
返回 下载 相关 举报
湿陷性黄土的成因、危害及处理措施研究.doc_第1页
第1页 / 共10页
湿陷性黄土的成因、危害及处理措施研究.doc_第2页
第2页 / 共10页
点击查看更多>>
资源描述

《湿陷性黄土的成因、危害及处理措施研究.doc》由会员分享,可在线阅读,更多相关《湿陷性黄土的成因、危害及处理措施研究.doc(10页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、【精品文档】如有侵权,请联系网站删除,仅供学习与交流湿陷性黄土的成因、危害及处理措施研究.精品文档.湿陷性黄土的成因、危害及处理措施研究苏小凯 097312 李萌萌 097203聂建萍097205 侯丽丹097231 李浩107142 姬鹏龙095838(能环)(河北工业大学土木学院,天津 300401)摘要:黄土在天然含水率时一般呈坚硬或硬塑状态且具有较高的强度和低的或中等偏低的压缩性,但遇水浸湿后,部分黄土即使在其自重作用下也会发生剧烈的沉陷,强度也随之迅速降低。本文对失陷性黄土的成因、黄土的湿陷性的危害及黄土湿陷处理措施等问题进行了分析和研究。Loess in the natural w

2、ater content is generally rigid or hard plastic state and has high strength and low or moderate to low compression, but the water soaked, part of loess even in its gravity will be severe subsidence, strength also decreases rapidly. In this paper, the causes of collapse loess collapsibility of loess

3、collapsibility of loess hazards and measures of problem analysis and research关键词:失陷性黄土;成因;危害;措施一、湿陷性黄土的成因在上覆土层自重应力作用下,或者在自重应力和附加应力共同作用下,因浸水后土的结构破坏而发生显著附加变形的土称为湿陷性土,属于特殊土。黄土的湿陷性是指黄土在天然低湿度下往往具有明显的高强度和低压缩性,但遇水浸湿后会发生变形大幅度突增和强度也随之迅速降低的现象。湿陷产生的根本原因是黄土具有明显的遇水连接减弱,结构趋于紧密的有利于湿陷的特殊成分和结构。黄土湿陷性强弱与其微结构特征、颗粒组成、化学

4、成分等因素有关。在同一地区,土的湿陷性又与其天然孔隙比和天然含水量有关,并取决于浸水程度和压力大小。黄土中粘土粒愈多,并均匀分布在骨架颗粒之间,则均有较大的胶结作用,土的湿陷性愈好。黄土中的盐类,如以较难溶解得碳酸钙为主而具有胶结作用,湿陷性减弱,而石膏及易溶盐含量愈大,土的湿陷性愈强。在一定的天然孔隙水比和天然含水量情况下,黄土的湿陷变形量将随浸湿程度和压力的增加而增大,但当压力增加到某一个定值以后,湿陷量却又随着压力的增加而减小。另外,黄土的湿陷性从根本上与其堆积年代和成因有密切关系。二、湿陷性黄土的危害湿陷性黄土是一种在干燥情况下,具有较高强度和较低压缩性,遇水后在一定外力作用或在自重作

5、用下强度骤降的一种特殊岩土。它广泛分布于我国甘肃、宁夏、陕西和山西等黄土高原地区。其中以03马兰组黄土最具有代表性。湿陷性黄土在天然湿度下,其压缩性较低,强度较高。受水浸湿后,在土体自重应力或自重应力与外部附加应力共同作用下,强度降低。当土体中残余的强度不足以抵抗土体中的结构应力时,土体结构迅速破坏,并发生显著的沉陷。土体湿陷对工程建设具有极大的危害性。地基湿陷的原因很多,如:贮水构筑物或输水管道漏水;工业或生活用水排放不当;大气降水渗入和积聚以及地下水位上升等。这些原因所造成的建筑物地基的湿陷变形往往是不均匀的,属于失稳型的地基变形,一般在一两天内就可能产生2030厘米的变形量。这种数量大、

6、速度快、而又不均匀的地基变形正是建筑物所难以适应的,往往会造成水塔、烟囱等高耸构筑物严重倾斜,房屋墙身破坏,梁、柱等承重结构开裂,以及机器基础倾斜等恶果。因此,在湿陷性黄土地区进行建设,对建筑物地基需要采取处理措施,以减小或消除湿陷性黄土地基因浸水而引起的湿陷变形,保证建筑物的安全与正常使用。图1为山西人民医院门前地面塌陷。图1另外, 湿陷性黄土对道路工程的工程危害主要表现为遇水后的不均匀沉降,引起公路路面大面积开裂、下陷,从而引起其他次生道路病害,进一步加剧黄土地基的湿陷性,引起恶性循环。所以道路工程中的湿陷性黄土路基的施工质量直接影响整个道路的施工质量以及后期运营期养护工程。三、湿陷性黄土

7、的防治措施湿陷性黄土的危害主要表现在对于建筑地基和道路地基的的湿陷危害,所以其防治措施也大多在于对地基的处理。(一) 对于湿陷性黄土地上的建筑地基,要根据建筑物的重要性、地基湿陷类型、地基湿陷等级进行设计。当地基的总湿陷量不大于5cm时,各类建筑均可按非湿陷性地基设计;在非自重湿陷性地基上,当地基内各土层的湿陷起始压力均大于其附加压力与上覆土的饱和自重压力之和时,各类建筑也可按非湿陷性地基设计。地基设计包括承载力、湿陷变形、压缩变形和稳定性计算。当这些计算值不能满足设计要求时,则需采取相应的地基处理(消除湿陷性)措旌,防水(防止或减少地基受水浸湿)措施和结构(减小建筑物的不均匀沉降和使建筑物能

8、适应地基湿陷变形)措施。另外,在我国西北、华北地区常会遇到黄土地基处理问题。地基处理根据设计的要求,可分为全部消除地基湿陷性和部分消除地基湿陷性两类。对生产用水量较大的厂房和重要建筑物,应全部消除地基的湿陷性,其处理深度为:自重湿陷性地基应处理基础底面以下的全部湿陷性土层;非自重湿陷性地基只需处理压缩层范围内的湿陷性土层,但采用桩基础时必须穿透全部湿陷性土层。对一般建筑物,可消除基础底面下一定深度范围内土层的湿陷性,使剩余的湿陷量限于不致危害建筑物安全使用的程度。常用的处理方法有:土(灰土)垫层法、重锤夯实法、强夯法、土(灰土)桩挤密法、预浸水法、桩基法和化学注浆法等。下面来一一详介。1、土(

9、灰土)垫层法 此法处理厚度一般为13m。非自重湿陷地基采用这两种方法处理后,地基浸水一般很少发生湿陷事故。由于土垫层和重锤夯实的处理深度有限,因此自重湿陷地基下部未处理的土层浸水后仍然会产生较大的湿陷。垫层法是先将基础下的湿陷性黄土一部分或全部挖除,然后用素土或灰土分层夯实做成垫层,以便消除地基的部分或全部湿陷量,并可减小地基的压缩变形,提高地基承载力,可将其分为局部垫层和整片垫层。当仅要求消除基底下13m湿陷性黄土的湿陷量时,宜采用局部或整片土垫层进行处理;当同时要求提高垫层土的承载力或增强水稳性时,宜采用局部或整片灰土垫层进行处理。 垫层的设计主要包括垫层的厚度、宽度、夯实后的压实系数和承

10、载力设计值的确定等方面。垫层设计的原则是既要满足建筑物对地基变形及稳定的要求,又要符合经济合理的要求。同时,还要考虑以下几方面的问题: (1)、局部土垫层的处理宽度超出基础底边的宽度较小,地基处理后,地面水及管道漏水仍可能从垫层侧向渗入下部未处理的湿陷性土层而引起湿陷,因此,设置局部垫层不考虑起防水、隔水作用,地基受水浸湿可能性大及有防渗要求的建筑物,不得采用局部土垫层处理地基。 (2)、整片垫层的平面处理范围,每边超出建筑物外墙基础外缘的宽度,不应小于垫层的厚度,即并不应小于2m。 (3)、在地下水位不可能上升的自重湿陷性黄土场地,当未消除地基的全部湿陷量时,对地基受水浸湿可能性大或有严格防

11、水要求的建筑物,采用整片土垫层处理地基较为适宜。但地下水位有可能上升的自重湿陷性黄土场地,应考虑水位上升后,对下部未处理的湿陷性土层引起湿陷的可能性。2、重锤夯实法及强夯法 重锤表层夯实适用于处理饱和度不大于60%的湿陷性黄土地基。一般采用2.53.0t的重锤,落距4.04.5m,可消除基底以下1.21.8m黄土层的湿陷性。在夯实层的范围内,土的物理、力学性质获得显著改善,平均干密度明显增大,压缩性降低,湿陷性消除,透水性减弱,承载力提高。非自重湿陷性黄土地基,其湿陷起始压力较大,当用重锤处理部分湿陷性黄土层后,可减少甚至消除黄土地基的湿陷变形。因此在非自重湿陷性黄土场地采用重锤夯实的优越性较

12、明显。 强夯法常用夯锤重量为1020t,落距1020m。消除湿陷性土层一般为36m。当土的含水量符合或接近最佳含水量时,强夯的效果最好。对非自重湿陷地基,该法可以全部消除地基湿陷性,对自重湿陷地基则应控制下部未经夯实土层的剩余湿陷量。强夯法加固地基机理一般认为,是将一定重量的重锤以一定落距给予地基以冲击和振动,从而达到增大压实度,改善土的振动液化条件,消除湿陷性黄土的湿陷性等目的。强夯加固过程是瞬时对地基土体施加一个巨大的冲击能量,使土体发生一系列的物理变化,如土体结构的破坏或排水固结、压密以及触变恢复等过程。其作用结果是使一定范围内的地基强度提高、孔隙挤密。单点强夯是通过反复巨大的冲击能及伴

13、随产生的压缩波、剪切波和瑞利波等对地基发挥综合作用,使土体受到瞬间加荷,加荷的拉压交替使用,使土颗粒间的原有接触形式迅速改变,产生位移,完成土体压缩-加密的过程。加固后土体的内聚力虽受到破坏或扰动有所降低,但原始内聚力随土体密度增大而得以大幅提高;单点强夯机如图2所示,夯锤底下形成夯实核,呈近似的抛物线型,夯实核的最大厚度与夯锤半径相近,土体成千层饼状,其干密度大于1.85g/cm3;图2 强夯机3、土(灰土)挤密桩法 桩挤密法适用于处理地下水位以上的湿陷性黄土地基,施工时,先按设计方案在基础平面位置布置桩孔并成孔,然后将备好的素土(粉质粘土或粉土)或灰土在最优含水量下分层填入桩孔内,并分层夯

14、(捣)实至设计标高止。通过成孔或桩体夯实过程中的横向挤压作用,使桩间土得以挤密,从而形成复合地基。值得注意的是,不得用粗颗粒的砂、石或其它透水性材料填入桩孔内。 灰土挤密桩和土桩地基一般适用于地下水位以上含水量14%22%的湿陷性黄土和人工黄土和人工填土,处理深度可达510米。灰土挤密桩是使用灰土挤密桩机如图3,用锤击打入或振动沉管的方法在土中形成桩孔,然后在桩孔中分层填入素土或灰土等填充料,在成孔和夯实填料的过程中,原来处于桩孔部位的土全部被挤入周围土体,通过这一挤密过程,从而彻底改变土层的湿陷性质并提高其承载力。其主要作用机理分两部分: (1)机械打桩成孔横向加密土层,改善土体物理力学性能

15、。在土中挤压成孔时,桩孔内原有土被强制侧向挤出,使桩周一定范围内土层受到挤压,扰动和重塑,使桩周土孔隙比减小,土中气体溢出,从而增加土体密实程度,降低土压缩性,提高土体承载能力。土体挤密范围,是从桩孔边向四周减弱,孔壁边土干密度可接近或超过最大干密度,也就是说压实系数可以接近或超过1.0,其挤密影响半径通常为1.52d(d为挤密桩直径),渐次向外,干密度逐渐减小,直至土的天然干密度,试验证明沉管对土体挤密效果可以相互叠加,桩距愈小,挤密效果愈显著。 (2)灰土桩与桩间挤密土合成复合地基。上部荷载通过它传递时,由于它们能互相适应变形,因此能有效而均匀地扩散应力,地基应力扩散得很快,在加固深度以下

16、附加应力已大为衰减,无需坚实的下卧层。 一般来说,挤密桩可以按等边三角形布置,这样可以达到均匀的挤密效果。每根桩都对其周围一定范围内的土体有一定的挤密作用,即使桩与桩之间有一小部分尚未被挤密的土体,因为其周围有着稳定的、不会发生湿陷的边界这一部分也不会发生湿陷变形。桩与其周围被挤密后的土体共同形成了复合地基,一起承受上部荷载。可以说,在挤密桩长度范围内土体的湿陷性已完全被消除处理后的地基与上部结构浑然一体,即使桩底以下土后的土体即使有沉降变形,也是微小的和均匀的,不致对上部结构形成威胁。桩的间距的大小直接影响到挤密效果的好坏,也与工程建设的经济性密切相关。图3 灰土挤密桩机4、预浸水法 预浸水

17、法是在修建建筑物前预先对湿陷性黄土场地大面积浸水,使土体在饱和自重应力作用下,发生湿陷产生压密,以消除全部黄土层的自重湿陷性和深部土层的外荷湿陷性。此法结合其他表层处理方法,可以全部消除自重湿陷性地基的湿陷性,一般适用于湿陷性黄土厚度大、湿陷性强烈的自重湿陷性黄土场地。由于浸水时场地周围地表下沉开裂,并容易造成“跑水”穿洞,影响建筑物的安全,所以空旷的新建地区较为适用。5、桩基法 湿陷性黄土地基采用桩基时,应穿透湿陷性土层,桩端应支承在密实的非湿陷土层中。桩基础如图4既不是天然地基,也不是人工地基,属于基础范畴,是将上部荷载传递给桩侧和桩底端以下的土(或岩)层,采用挖、钻孔等非挤土方法而成的桩

18、,在成孔过程中将土排出孔外,桩孔周围土的性质并无改善。但设置在湿陷性黄土场地上的桩基础,桩周土受水浸湿后,桩侧阻力大幅度减小,甚至消失,当桩周土产生自重湿陷时,桩侧的正摩阻力迅速转化为负摩阻力。因此,在湿陷性黄土场地上,不允许采用摩擦型桩,设计桩基础除桩身强度必须满足要求外,还应根据场地工程地质条件,采用穿透湿陷性黄土层的端承型桩(包括端承桩和摩擦端承桩),其桩底端以下的受力层:在非自重湿陷性黄土场地,必须是压缩性较低的非湿陷性土(岩)层;在自重湿陷性黄土场地,必须是可靠的持力层。这样,当桩周的土受水浸湿,桩侧的正摩阻力一旦转化为负摩阻力时,便可由端承型桩的下部非湿陷性土(岩)层所承受,并可满

19、足设计要求,以保证建筑物的安全与正常使用。黄土层中有地下水时可采用沉管灌注桩或预制桩。若为非自重湿陷地基,桩尖打入非湿陷性土层中;若为自重湿陷地基,桩尖应打入砂类土(粉、细砂除外)、碎石类土或基岩中。在湿陷性黄土地带,已有建筑物的地基发生湿陷事故时,可以采用桩基托换法。桩基托换必须有可靠的持力层,可彻底消除地基湿陷的隐患。图4 桩基础6、化学注浆法 由于地基浸水后土的含水量较高,采用加气硅化法可获得较好的效果。化学注浆法的成本较高,一般用于处理已有建筑物的地基湿陷事故。在我国湿陷性黄土地区地基处理应用很多,并取得实践经验的化学加固法包括硅化加固法和碱液加固法。硅化加固湿陷性黄土的物理化学过程,

20、一方面基于浓度不大的、粘滞度很小的硅酸钠溶液顺利地渗入黄土孔隙中,另一方面溶液与土的相互凝结,土起着凝结剂的作用。 碱液加固是利用氢氧化钠溶液加固湿陷性黄土地基。在我国始于20世纪60年代,其加固原则为,氢氧化钠溶液注入黄土后,首先与土中可溶性和交换性碱土金属阳离子发生置换反映,反映结果使土颗粒表面生成碱土金属氢氧化物。(二)、由于黄土特殊的工程性质(水敏性、大孔性、结构性),黄土地区的铁路工程建设也常常会出现多种工程病害,如深挖方边坡的坍塌,高填方路堤的不均匀沉降,地基承载力低,高湿度黄土中隧道的塌方和既有线黄土隧道出现拱部裂缝,桩基因负摩擦作用的变形和破坏等多方面的问题。其中黄土湿陷性问题

21、最为突出,给铁路运营和养护带来的危害也最大。湿陷性黄土道路地基处理施工除采用防止地表水下渗的措施外,可根据工程具体情况采取如上述对于建筑地基相同的垫层法、重锤夯实法、强夯法、桩挤密法、预浸水法、桩基法和化学注浆法等方法因地制宜进行处理,并采取措施做好路基的防冲、截排、防渗。加筋土挡土墙是湿陷性黄土地区得到迅速推广的有效防护措施。附录:黄土路基工后沉降评估路基的变形一般可分为路基的工后沉降和路基的弹性变形及塑性变形两类。工后沉降为路基竣工开始铺轨后产生的沉降,它由路基本体的压密变形和地基的沉降变形两部分组成。实测资料表明,当填料及压实度满足要求时路基填筑部分的压密沉降仅占填土高度的0.10.5%

22、,且一般在一年左右即可完成,所以,路基工后沉降主要是由地基沉降引起的沉降量。工后沉降的控制是路基上铺设无碴轨道的关键,在铺设无碴轨道之前,为保证路基的工后沉降和变形符合设计要求,必须对路基变形作系统的评估。勘察设计阶段,可根据地质条件、土层物理力学参数、填土高度、地基加固措施、工期等计算总沉降量及工后沉降量,以便选择合理的地基加固措施。由于地层的不均匀性、参数选取的精度、计算方法的局限性以及施工过程等因素的影响,设计阶段的沉降计算只能是一种估算,其精度难以满足客运专线标准要求。因此,客运专线沉降控制必须根据施工期间和路基填筑完成或施加预压荷载后不少于6个月的观测期和调整期的实测沉降数据,采用数

23、学方法对最终沉降量、沉降速率、工后沉降量进行推算,借此确定铺轨时间。 四、结语本文论证了湿陷性黄土的成因、危害及湿陷性黄土危害的防治措施,详细表述了地基常用处理方法的选用原则、适用范围、可能处理深度及效果等,同时对各处理方法应注意事项和作用等也进行了概述。由于黄土工程地质性质的复杂性,因此需要进一步结合区域黄土的地貌特征、成因、地层结构特征、物理力学性质和湿陷性特征对浸水试验工点湿陷性结果的差异性做出合理的解释和分析,为建筑和道路建设的湿陷性问题提供可靠的数据支持以及处理措施。 参考文献1 GB50025-2004湿陷性黄土地区建筑规范2 唐大雄工程岩土学北京:地质出版社,3 裴章勤,刘卫东湿陷性黄土地基处理M中国建筑工业出版社,1992

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 小学资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁