数学选修2-1全套教案.doc

上传人:豆**** 文档编号:17612342 上传时间:2022-05-25 格式:DOC 页数:22 大小:1.56MB
返回 下载 相关 举报
数学选修2-1全套教案.doc_第1页
第1页 / 共22页
数学选修2-1全套教案.doc_第2页
第2页 / 共22页
点击查看更多>>
资源描述

《数学选修2-1全套教案.doc》由会员分享,可在线阅读,更多相关《数学选修2-1全套教案.doc(22页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、【精品文档】如有侵权,请联系网站删除,仅供学习与交流数学选修2-1全套教案.精品文档.第二章 圆锥曲线与方程2.1曲线与方程2.1.1曲线与方程2.1.2求曲线的轨迹方程一、教学目标(一)知识教学点使学生掌握常用动点的轨迹以及求动点轨迹方程的常用技巧与方法(二)能力训练点通过对求轨迹方程的常用技巧与方法的归纳和介绍,培养学生综合运用各方面知识的能力(三)学科渗透点通过对求轨迹方程的常用技巧与方法的介绍,使学生掌握常用动点的轨迹,为学习物理等学科打下扎实的基础二、教材分析1重点:求动点的轨迹方程的常用技巧与方法(解决办法:对每种方法用例题加以说明,使学生掌握这种方法)2难点:作相关点法求动点的轨

2、迹方法(解决办法:先使学生了解相关点法的思路,再用例题进行讲解)教具准备:与教材内容相关的资料。教学设想:激发学生的学习热情,激发学生的求知欲,培养严谨的学习态度,培养积极进取的精神三、教学过程学生探究过程:(一)复习引入大家知道,平面解析几何研究的主要问题是:(1)根据已知条件,求出表示平面曲线的方程;(2)通过方程,研究平面曲线的性质我们已经对常见曲线圆、椭圆、双曲线以及抛物线进行过这两个方面的研究,今天在上面已经研究的基础上来对根据已知条件求曲线的轨迹方程的常见技巧与方法进行系统分析(二)几种常见求轨迹方程的方法1直接法由题设所给(或通过分析图形的几何性质而得出)的动点所满足的几何条件列

3、出等式,再用坐标代替这等式,化简得曲线的方程,这种方法叫直接法例1(1)求和定圆x2+y2=k2的圆周的距离等于k的动点P的轨迹方程;(2)过点A(a,o)作圆Ox2+y2=R2(aRo)的割线,求割线被圆O截得弦的中点的轨迹对(1)分析:动点P的轨迹是不知道的,不能考查其几何特征,但是给出了动点P的运动规律:|OP|=2R或|OP|=02定义法利用所学过的圆的定义、椭圆的定义、双曲线的定义、抛物线的定义直接写出所求的动点的轨迹方程,这种方法叫做定义法这种方法要求题设中有定点与定直线及两定点距离之和或差为定值的条件,或利用平面几何知识分析得出这些条件3相关点法若动点P(x,y)随已知曲线上的点

4、Q(x0,y0)的变动而变动,且x0、y0可用x、y表示,则将Q点坐标表达式代入已知曲线方程,即得点P的轨迹方程这种方法称为相关点法(或代换法)4待定系数法求圆、椭圆、双曲线以及抛物线的方程常用待定系数法求 (三)巩固练习用十多分钟时间作一个小测验,检查一下教学效果练习题用一小黑板给出 (四)、教学反思求曲线的轨迹方程一般地有直接法、定义法、相关点法、待定系数法,还有参数法、复数法也是求曲线的轨迹方程的常见方法,这等到讲了参数方程、复数以后再作介绍五、布置作业1两定点的距离为6,点M到这两个定点的距离的平方和为26,求点M的轨迹方程2动点P到点F1(1,0)的距离比它到F2(3,0)的距离少2

5、,求P点的轨迹3已知圆x2+y2=4上有定点A(2,0),过定点A作弦AB,并延长到点P,使3|AB|=2|AB|,求动点P的轨迹方程作业答案:2.2 椭 圆把平面内与两个定点,的距离之和等于常数(大于)的点的轨迹叫做椭圆(ellipse)其中这两个定点叫做椭圆的焦点,两定点间的距离叫做椭圆的焦距即当动点设为时,椭圆即为点集(ii)椭圆标准方程的推导过程提问:已知图形,建立直角坐标系的一般性要求是什么?第一、充分利用图形的对称性;第二、注意图形的特殊性和一般性关系 无理方程的化简过程是教学的难点,注意无理方程的两次移项、平方整理 设参量的意义:第一、便于写出椭圆的标准方程;第二、的关系有明显的

6、几何意义 类比:写出焦点在轴上,中心在原点的椭圆的标准方程 知识与技能目标了解用方程的方法研究图形的对称性;理解椭圆的范围、对称性及对称轴,对称中心、离心率、顶点的概念;掌握椭圆的标准方程、会用椭圆的定义解决实际问题;通过例题了解椭圆的第二定义,准线及焦半径的概念,利用信息技术初步了解椭圆的第二定义 过程与方法目标(1)复习与引入过程引导学生复习由函数的解析式研究函数的性质或其图像的特点,在本节中不仅要注意通过对椭圆的标准方程的讨论,研究椭圆的几何性质的理解和应用,而且还注意对这种研究方法的培养由椭圆的标准方程和非负实数的概念能得到椭圆的范围;由方程的性质得到椭圆的对称性;先定义圆锥曲线顶点的

7、概念,容易得出椭圆的顶点的坐标及长轴、短轴的概念;通过P48的思考问题,探究椭圆的扁平程度量椭圆的离心率板书212椭圆的简单几何性质(2)新课讲授过程(i)通过复习和预习,知道对椭圆的标准方程的讨论来研究椭圆的几何性质提问:研究曲线的几何特征有什么意义?从哪些方面来研究?通过对曲线的范围、对称性及特殊点的讨论,可以从整体上把握曲线的形状、大小和位置要从范围、对称性、顶点及其他特征性质来研究曲线的几何性质 (ii)椭圆的简单几何性质 范围:由椭圆的标准方程可得,进一步得:,同理可得:,即椭圆位于直线和所围成的矩形框图里;对称性:由以代,以代和代,且以代这三个方面来研究椭圆的标准方程发生变化没有,

8、从而得到椭圆是以轴和轴为对称轴,原点为对称中心;顶点:先给出圆锥曲线的顶点的统一定义,即圆锥曲线的对称轴与圆锥曲线的交点叫做圆锥曲线的顶点因此椭圆有四个顶点,由于椭圆的对称轴有长短之分,较长的对称轴叫做长轴,较短的叫做短轴;离心率: 椭圆的焦距与长轴长的比叫做椭圆的离心率(),; (iii)例题讲解与引申、扩展例4 求椭圆的长轴和短轴的长、离心率、焦点和顶点的坐标分析:由椭圆的方程化为标准方程,容易求出引导学生用椭圆的长轴、短轴、离心率、焦点和顶点的定义即可求相关量扩展:已知椭圆的离心率为,求的值 情感、态度与价值观目标在合作、互动的教学氛围中,通过师生之间、学生之间的交流、合作、互动实现共同

9、探究,教学相长的教学活动情境,结合教学内容,培养学生科学探索精神、审美观和科学世界观,激励学生创新必须让学生认同和掌握:椭圆的简单几何性质,能由椭圆的标准方程能直接得到椭圆的范围、对称性、顶点和离心率;必须让学生认同与理解:已知几何图形建立直角坐标系的两个原则,充分利用图形对称性,注意图形的特殊性和一般性;必须让学生认同与熟悉:取近似值的两个原则:实际问题可以近似计算,也可以不近似计算,要求近似计算的一定要按要求进行计算,并按精确度要求进行,没有作说明的按给定的有关量的有效数字处理;让学生参与并掌握利用信息技术探究点的轨迹问题,培养学生学习数学的兴趣和掌握利用先进教学辅助手段的技能 学法指导:

10、以问题为诱导,结合图形,引导学生进行必要的联想、类比、化归、转化.复习回顾问题推广引出课题典型例题课堂练习归纳小结教学目标知识目标:椭圆第二定义、准线方程;能力目标:1使学生了解椭圆第二定义给出的背景; 2了解离心率的几何意义; 3使学生理解椭圆第二定义、椭圆的准线定义; 4使学生掌握椭圆的准线方程以及准线方程的应用; 5使学生掌握椭圆第二定义的简单应用;情感与态度目标:通过问题的引入和变式,激发学生学习的兴趣,应用运动变化的观点看待问题,体现数学的美学价值.教学重点:椭圆第二定义、焦半径公式、准线方程;教学难点:椭圆的第二定义的运用;教具准备:与教材内容相关的资料。教学设想:激发学生的学习热

11、情,激发学生的求知欲,培养严谨的学习态度,培养积极进取的精神教学过程: 学生探究过程:复习回顾1椭圆的长轴长为 18 ,短轴长为 6 ,半焦距为,离心率为,焦点坐标为,顶点坐标为,(准线方程为).2短轴长为8,离心率为的椭圆两焦点分别为、,过点作直线交椭圆于A、B两点,则的周长为 20 .引入课题【习题4(教材P50例6)】椭圆的方程为,M1,M2为椭圆上的点 求点M1(4,2.4)到焦点F(3,0)的距离 2.6 . 若点M2为(4,y0)不求出点M2的纵坐标,你能求出这点到焦点F(3,0)的距离吗?【椭圆上的点M到右焦点的距离与它到定直线的距离的比等于离心率【引出课题】椭圆的第二定义当点与

12、一个定点的距离和它到一条定直线的距离的比是常数时,这个点的轨迹是椭圆定点是椭圆的焦点,定直线叫做椭圆的准线,常数是椭圆的离心率对于椭圆,相应于焦点的准线方程是根据对称性,相应于焦点的准线方程是对于椭圆的准线方程是可见椭圆的离心率就是椭圆上一点到焦点的距离与到相应准线距离的比,这就是离心率的几何意义由椭圆的第二定义可得:右焦半径公式为;左焦半径公式为典型例题例1、求椭圆的右焦点和右准线;左焦点和左准线;小结:求椭圆的准线方程一定要化成标准形式,然后利用准线公式即可求出例2、椭圆上的点到左准线的距离是,求到左焦点的距离为 .变式:求到右焦点的距离为 .反思:由于是标准方程,故只要有两上独立的条件就

13、可以确定一个椭圆,而题目中有三个条件,所以我们必须进行检验,又因为另一方面离心率就等于这是两上矛盾的结果,所以所求方程是错误的。又由解法一可知,所求得的椭圆不是标准方程。小结:以后有涉及到“动点到定点的距离和它到定直线的距离的比是常数时”最好的方法是采用求轨迹方程的思路,但是这种方法计算量比较大;巩固练习教学反思1椭圆第二定义、焦半径公式、准线方程;2椭圆定义的简单运用;3离心率的求法以及焦半径公式的应用;课后作业2. 椭圆中焦点三角形的性质及应用定义:椭圆上任意一点与两焦点所构成的三角形称为焦点三角形。性质一:已知椭圆方程为两焦点分别为设焦点三角形中则。性质二:已知椭圆方程为左右两焦点分别为

14、设焦点三角形,若最大,则点P为椭圆短轴的端点。证明:设,由焦半径公式可知:,在中,性质三:已知椭圆方程为两焦点分别为设焦点三角形中则证明:设则在中,由余弦定理得: 命题得证。(2000年高考题)已知椭圆的两焦点分别为若椭圆上存在一点使得求椭圆的离心率的取值范围。简解:由椭圆焦点三角形性质可知即 ,于是得到的取值范围是性质四:已知椭圆方程为两焦点分别为设焦点三角形,则椭圆的离心率。由正弦定理得:由等比定理得:而, 。已知椭圆的焦点是F1(1,0)、F2(1,0),P为椭圆上一点,且F1F2是PF1和PF2的等差中项(1)求椭圆的方程;(2)若点P在第三象限,且PF1F2120,求tanF1PF2

15、2.3双曲线221双曲线及其标准方程把平面内与两个定点,的距离的差的绝对值等于常数(小于)的点的轨迹叫做双曲线(hyperbola)其中这两个定点叫做双曲线的焦点,两定点间的距离叫做双曲线的焦距即当动点设为时,双曲线即为点集(ii)双曲线标准方程的推导过程提问:已知椭圆的图形,是怎么样建立直角坐标系的?类比求椭圆标准方程的方法由学生来建立直角坐标系 无理方程的化简过程仍是教学的难点,让学生实际掌握无理方程的两次移项、平方整理的数学活动过程 类比椭圆:设参量的意义:第一、便于写出双曲线的标准方程;第二、的关系有明显的几何意义 类比:写出焦点在轴上,中心在原点的双曲线的标准方程(iii)例题讲解、

16、引申与补充例1 已知双曲线两个焦点分别为,双曲线上一点到,距离差的绝对值等于,求双曲线的标准方程分析:由双曲线的标准方程的定义及给出的条件,容易求出222双曲线的简单几何性质(2)新课讲授过程(i)通过复习和预习,对双曲线的标准方程的讨论来研究双曲线的几何性质提问:研究双曲线的几何特征有什么意义?从哪些方面来研究?通过对双曲线的范围、对称性及特殊点的讨论,可以从整体上把握曲线的形状、大小和位置要从范围、对称性、顶点、渐近线及其他特征性质来研究曲线的几何性质 (ii)双曲线的简单几何性质 范围:由双曲线的标准方程得,进一步得:,或这说明双曲线在不等式,或所表示的区域;对称性:由以代,以代和代,且

17、以代这三个方面来研究双曲线的标准方程发生变化没有,从而得到双曲线是以轴和轴为对称轴,原点为对称中心;顶点:圆锥曲线的顶点的统一定义,即圆锥曲线的对称轴与圆锥曲线的交点叫做圆锥曲线的顶点因此双曲线有两个顶点,由于双曲线的对称轴有实虚之分,焦点所在的对称轴叫做实轴,焦点不在的对称轴叫做虚轴;渐近线:直线叫做双曲线的渐近线;离心率: 双曲线的焦距与实轴长的比叫做双曲线的离心率()(iii)例题讲解与引申、扩展例3 求双曲线的实半轴长和虚半轴长、焦点的坐标、离心率、渐近线方程分析:由双曲线的方程化为标准方程,容易求出引导学生用双曲线的实半轴长、虚半轴长、离心率、焦点和渐近线的定义即可求相关量或式子,但

18、要注意焦点在轴上的渐近线是扩展:求与双曲线共渐近线,且经过点的双曲线的标准方及离心率解法剖析:双曲线的渐近线方程为焦点在轴上时,设所求的双曲线为,点在双曲线上,无解;焦点在轴上时,设所求的双曲线为,点在双曲线上,因此,所求双曲线的标准方程为,离心率这个要进行分类讨论,但只有一种情形有解,事实上,可直接设所求的双曲线的方程为 情感、态度与价值观目标在合作、互动的教学氛围中,通过师生之间、学生之间的交流、合作、互动实现共同探究,教学相长的教学活动情境,结合教学内容,培养学生科学探索精神、审美观和科学世界观,激励学生创新必须让学生认同和掌握:双曲线的简单几何性质,能由双曲线的标准方程能直接得到双曲线

19、的范围、对称性、顶点、渐近线和离心率;必须让学生认同与理解:已知几何图形建立直角坐标系的两个原则,充分利用图形对称性,注意图形的特殊性和一般性;必须让学生认同与熟悉:取近似值的两个原则:实际问题可以近似计算,也可以不近似计算,要求近似计算的一定要按要求进行计算,并按精确度要求进行,没有作说明的按给定的有关量的有效数字处理;让学生参与并掌握利用信息技术探究点的轨迹问题,培养学生学习数学的兴趣和掌握利用先进教学辅助手段的技能 3.课题:双曲线第二定义教学重点:双曲线的第二定义教学难点:双曲线的第二定义及应用.教学方法:类比法(类比椭圆的第二定义)教学过程:111111111111111111111

20、111111111一、复习引入: 1、 (1)、双曲线的定义:平面上到两定点距离之差的绝对值等于常数(小于)的点的轨迹叫做双曲线.定点叫做双曲线的焦点,两焦点的距离叫做双曲线的焦距。(2)、双曲线的标准方程:焦点在x轴: 焦点在y轴: 其中2、 对于焦点在x轴上的双曲线的有关性质:(1)、焦点:F1(-c,0),F2(c,0);(2)、渐近线:;(3)、离心率:13、今节课我们来学习双曲线的另一定义。(板书课题:双曲线第二定义)二、新课教学: 1、引例(课本P64例6):点M(x,y) 与定点F(5,0)距离和它到定直线的距离之比是常数,求点M的轨迹方程. 提出问题:(从特殊到一般)将上题改为

21、:点M(x,y)与定点F(c,0)距离和它到定直线的距离之比是常数,求点M的轨迹方程解:设是点M到直线的距离, 根据题意,所求轨迹就是集合P=M|, 即 化简得两边同时除以得2、小结: 双曲线第二定义:当动点M(x,y) 到一定点F(c,0)的距离和它到一定直线的距离之比是常数时,这个动点M(x,y)的轨迹是双曲线。其中定点F(c,0)是双曲线的一个焦点,定直线叫双曲线的一条准线,常数e是双曲线的离心率。双曲线上任一点到焦点的线段称为焦半径。例如PF是双曲线的焦半径。三、课堂练习1 求的准线方程、两准线间的距离。2、(2006年广东高考第8题选择题)已知双曲线 3x 2y 2 = 9,则双曲线

22、右支上的点 P 到右焦点的距离与点 P 到右准线的距离之比等于( )。(A) (B) (C) 2(D) 43、如果双曲线上的一点P到左焦点的距离为9,则P到右准线的距离是 4、双曲线两准线把两焦点连线段三等分,求e. 5. 双曲线的 ,渐近线与一条准线围成的三角形的面积是 . 四、巩固练习:1已知双曲线= 1(a0,b0)的右焦点为F,右准线与一条渐近线交于A,OAF面积为(O为原点),则两条渐近线夹角为( )A30B45C60D90五、教学反思:(1) 知识内容:双曲线的第二定义及应用。(2) 数学方法:类比法,(3) 数学思想: 从特殊到一般六、作业: 1、双曲线的一条准线是y=1,则的值

23、。2、求渐近线方程是4x,准线方程是5y的双曲线方程3、已知双曲线的离心率为2,准线方程为,焦点F(2,0),求双曲线标准方程.4、(请你编题)若双曲线标准方程为上一点p到(左,右)焦点的距离是则点p到(左, 右)准线的距离.七、板书设计课题:双曲线的第二定义及应用2.4抛物线1 2。 3 2 抛物线的几何性质(1) 抛物线的几何性质下面我们类比椭圆、双曲线的几何性质,从抛物线的标准方程y2=2px(p0)出发来研究它的几何性质(二)几何性质怎样由抛物线的标准方程确定它的几何性质?以y2=2px(p0)为例,用小黑板给出下表,请学生对比、研究和填写(2) 例题的讲解与引申 例3有2种解法;解法

24、一运用了抛物线的重要性质:抛物线上任一点到焦点的距离(即此点的焦半径)等于此点到准线的距离可得焦半径公式设P(x0,这个性质在解决许多有关焦点的弦的问题中经常用到,因此必须熟练掌握(2)由焦半径不难得出焦点弦长公式:设AB是过抛物线焦点的一条弦(焦点弦),若A(x1,y1)、B(x2,y2)则有|AB|=x1+x2+p特别地:当ABx轴,抛物线的通径|AB|=2p2.4.1抛物线及标准方程(i)由上面的探究过程得出抛物线的定义平面内与一定点F和一条定直线l的距离相等的点的轨迹叫做抛物线(定点F不在定直线l上)定点F叫做抛物线的焦点,定直线l叫做抛物线的准线.(ii) 抛物线标准方程的推导过程引

25、导学生分析出:方案3中得出的方程作为抛物线的标准方程这是因为这个方程不仅具有较简的形式,而方程中的系数有明确的几何意义:一次项系数是焦点到准线距离的2倍由于焦点和准线在坐标系下的不同分布情况,抛物线的标准方程有四种情形(列表如下):将上表画在小黑板上,讲解时出示小黑板,并讲清为什么会出现四种不同的情形,四种情形中P0;并指出图形的位置特征和方程的形式应结合起来记忆即:当对称轴为x轴时,方程等号右端为2px,相应地左端为y2;当对称轴为y轴时,方程等号的右端为2py,相应地左端为x2同时注意:当焦点在正半轴上时,取正号;当焦点在负半轴上时,取负号(iii)例题讲解与引申例1 已知抛物线的标准方程

26、是y2=6x,求它的焦点坐标和准线方程已知抛物线的焦点是F(0,-2),求它的标准方程2.4.2 抛物线的几何性质知识与技能目标使学生理解并掌握抛物线的几何性质,并能从抛物线的标准方程出发,推导这些性质从抛物线的标准方程出发,推导抛物线的性质,从而培养学生分析、归纳、推理等能力过程与方法目标复习与引入过程1抛物线的定义是什么?请一同学回答应为:“平面内与一个定点F和一条定直线l的距离相等的点的轨迹叫做抛物线”2抛物线的标准方程是什么?再请一同学回答应为:抛物线的标准方程是y2=2px(p0),y2=-2px(p0),x2=2py(p0)和x2=-2py(p0)下面我们类比椭圆、双曲线的几何性质

27、,从抛物线的标准方程y2=2px(p0)出发来研究它的几何性质板书抛物线的几何性质(2)新课讲授过程(i)抛物线的几何性质通过和椭圆、双曲线的几何性质相比,抛物线的几何性质有什么特点?学生和教师共同小结:(1)抛物线只位于半个坐标平面内,虽然它也可以无限延伸,但是没有渐近线(2)抛物线只有一条对称轴,这条对称轴垂直于抛物线的准线或与顶点和焦点的连线重合,抛物线没有中心(3)抛物线只有一个顶点,它是焦点和焦点在准线上射影的中点(4)抛物线的离心率要联系椭圆、双曲线的第二定义,并和抛物线的定义作比较其结果是应规定抛物线的离心率为1注意:这样不仅引入了抛物线离心率的概念,而且把圆锥曲线作为点的轨迹统

28、一起来了第三章 空间向量与立体几何3.1空间向量及其运算(一)生既有大小又有方向的量叫向量向量的表示方法有:用有向线段表示;用字母a、b等表示;用有向线段的起点与终点字母:师数学上所说的向量是自由向量,也就是说在保持向量的方向、大小的前提下可以将向量进行平移,由此我们可以得出向量相等的概念,请同学们回忆一下生长度相等且方向相同的向量叫相等向量.师学习了向量的有关概念以后,我们学习了向量的加减以及数乘向量运算:向量的加法:向量的减法:实数与向量的积:实数与向量a的积是一个向量,记作a,其长度和方向规定如下:(1)|a|a|(2)当0时,a与a同向; 当0时,a与a反向; 当0时,a0.加法交换律

29、:abba加法结合律:(ab)ca(bc)数乘分配律:(ab)ab.新课讲授师如同平面向量的概念,我们把空间中具有大小和方向的量叫做向量例如空间的一个平移就是一个向量那么我们怎样表示空间向量呢?相等的向量又是怎样表示的呢?生与平面向量一样,空间向量也用有向线段表示,并且同向且等长的有向线段表示同一向量或相等的向量师由以上知识可知,向量在空间中是可以平移的空间任意两个向量都可以用同一平面内的两条有向线段表示因此我们说空间任意两个向量是共面的师空间向量的加法、减法、数乘向量各是怎样定义的呢?生空间向量的加法、减法、数乘向量的定义与平面向量的运算一样:=a+b,(指向被减向量),a 师空间向量的加法

30、与数乘向量有哪些运算律呢?请大家验证这些运算律生空间向量加法与数乘向量有如下运算律:加法交换律:a + b = b + a;加法结合律:(a + b) + c =a + (b + c);(课件验证)数乘分配律:(a + b) =a +b师空间向量加法的运算律要注意以下几点:首尾相接的若干向量之和,等于由起始向量的起点指向末尾向量的终点的向量即:因此,求空间若干向量之和时,可通过平移使它们转化为首尾相接的向量首尾相接的若干向量若构成一个封闭图形,则它们的和为零向量即:两个向量相加的平行四边形法则在空间仍然成立因此,求始点相同的两个向量之和时,可以考虑用平行四边形法则预习课本P92P96,预习提纲

31、: 怎样的向量叫做共线向量?两个向量共线的充要条件是什么?空间中点在直线上的充要条件是什么?什么叫做空间直线的向量参数表示式?怎样的向量叫做共面向量?向量p与不共线向量a、b共面的充要条件是什么?空间一点P在平面MAB内的充要条件是什么?空间向量及其运算(2)1共线(平行)向量:如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量。读作:平行于,记作:2共线向量定理:对空间任意两个向量的充要条件是存在实数,使(唯一)推论:如果为经过已知点,且平行于已知向量的直线,那么对任一点,点在直线上的充要条件是存在实数,满足等式,其中向量叫做直线的方向向量。在上取,则式可化

32、为或当时,点是线段的中点,此时和都叫空间直线的向量参数方程,是线段的中点公式3向量与平面平行:已知平面和向量,作,如果直线平行于或在内,那么我们说向量平行于平面,记作:通常我们把平行于同一平面的向量,叫做共面向量说明:空间任意的两向量都是共面的4共面向量定理:如果两个向量不共线,与向量共面的充要条件是存在实数使推论:空间一点位于平面内的充分必要条件是存在有序实数对,使或对空间任一点,有3.1.3空间向量的数量积(1)2向量的模:设,则有向线段的长度叫做向量的长度或模,记作:;3向量的数量积:已知向量,则叫做的数量积,记作,即已知向量和轴,是上与同方向的单位向量,作点在上的射影,作点在上的射影,

33、则叫做向量在轴上或在上的正射影;可以证明的长度4空间向量数量积的性质: (1)(2)(3)5空间向量数量积运算律:(1)(2)(交换律)(3)(分配律)向量的数量积(2)1)定义: 设=,则 (的范围为 )设,则 。注:不能写成,或 的结果为一个数值。2)投影:在方向上的投影为 。3)向量数量积运算律: 注:没有结合律一、向量在轴上的投影1几个概念(1) 轴上有向线段的值:设有一轴,是轴上的有向线段,如果数满足,且当与轴同向时是正的,当与轴反向时是负的,那么数叫做轴上有向线段的值,记做AB,即。设e是与轴同方向的单位向量,则(2) 设A、B、C是u轴上任意三点,不论三点的相互位置如何,总有(3

34、) 两向量夹角的概念:设有两个非零向量和b,任取空间一点O,作,规定不超过的称为向量和b的夹角,记为(4) 空间一点A在轴上的投影:通过点A作轴的垂直平面,该平面与轴的交点叫做点A在轴上的投影。(5) 向量在轴上的投影:设已知向量的起点A和终点B在轴上的投影分别为点和,那么轴上的有向线段的值叫做向量在轴上的投影,记做。2投影定理性质1:向量在轴上的投影等于向量的模乘以轴与向量的夹角的余弦:性质2:两个向量的和在轴上的投影等于两个向量在该轴上的投影的和,即 性质3:向量与数的乘法在轴上的投影等于向量在轴上的投影与数的乘法。即二、向量在坐标系上的分向量与向量的坐标1向量在坐标系上的分向量与向量的坐

35、标通过坐标法,使平面上或空间的点与有序数组之间建立了一一对应关系,同样地,为了沟通数与向量的研究,需要建立向量与有序数之间的对应关系。设a =是以为起点、为终点的向量,i、j、k分别表示 图75沿x,y,z轴正向的单位向量,并称它们为这一坐标系的基本单位向量,由图75,并应用向量的加法规则知:i + j+k或a = ax i + ayj + azk上式称为向量a按基本单位向量的分解式。有序数组ax、ay、az与向量a一一对应,向量a在三条坐标轴上的投影ax、ay、az就叫做向量a的坐标,并记为 a ax,ay,az。上式叫做向量a的坐标表示式。于是,起点为终点为的向量可以表示为特别地,点对于原

36、点O的向径注意:向量在坐标轴上的分向量与向量在坐标轴上的投影有本质区别。向量a在坐标轴上的投影是三个数ax、ay、az,向量a在坐标轴上的分向量是三个向量ax i 、 ayj 、 azk.2向量运算的坐标表示设,即,则(1) 加法: 减法: 乘数: 或 平行:若a0时,向量相当于,即也相当于向量的对应坐标成比例即三、向量的模与方向余弦的坐标表示式设,可以用它与三个坐标轴的夹角(均大于等于0,小于等于)来表示它的方向,称为非零向量a的方向角,见图76,其余弦表示形式称为方向余弦。图761 模2 方向余弦由性质1知,当时,有 任意向量的方向余弦有性质: 与非零向量a同方向的单位向量为:3.2立体几

37、何中的向量方法空间距离利用向量方法求解空间距离问题,可以回避此类问题中大量的作图、证明等步骤,而转化为向量间的计算问题例如图,已知正方形ABCD的边长为4,E、F分别是AB、AD的中点,GC平面ABCD,且GC2,求点B到平面EFG的距离分析:由题设可知CG、CB、CD两两互相垂直,可以由此建立空间直角坐标系用向量法求解,就是求出过B且垂直于平面EFG的向量,它的长即为点B到平面EFG的距离解:如图,设4i,4j,2k,以i、j、k为坐标向量建立空间直角坐标系Cxyz由题设C(0,0,0),A(4,4,0),B(0,4,0),D(4,0,0),E(2,4,0),F(4,2,0),G(0,0,2

38、)设平面EFG,M为垂足,则M、G、E、F四点共面,由共面向量定理知,存在实数a、b、c,使得,(2a+4b,2b4c,2c)由平面EFG,得,于是整理得:,解得(2a+4b,2b4c,2c)故点B到平面EFG的距离为说明:用向量法求点到平面的距离,常常不必作出垂线段,只需利用垂足在平面内、共面向量定理、两个向量垂直的充要条件解出垂线段对应的向量就可以了例2已知正方体ABCD的棱长为1,求直线与AC的距离分析:设异面直线、AC的公垂线是直线l,则线段在直线l上的射影就是两异面直线的公垂线段,所以此题可以利用向量的数量积的几何意义求解解:如图,设i,j,k,以i、j、k为坐标向量建立空间直角坐标系xyz,则有设n是直线l方向上的单位向量,则n,n,解得或取n,则向量在直线l上的投影为n由两个向量的数量积的几何意义知,直线与AC的距离为向量的内积与二面角的计算 在高等代数与解析几何课程第一章向量代数的教学中,讲到几何空间的内积时,有一个例题(见1,p53)要求证明如下的公式: (1)公式(1)在立体几何计算二面角的平面角时是有用的。我们来介绍如下的两个应用。

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 小学资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁