抽样分布、参数估计和假设检验.doc

上传人:豆**** 文档编号:17610579 上传时间:2022-05-25 格式:DOC 页数:17 大小:505KB
返回 下载 相关 举报
抽样分布、参数估计和假设检验.doc_第1页
第1页 / 共17页
抽样分布、参数估计和假设检验.doc_第2页
第2页 / 共17页
点击查看更多>>
资源描述

《抽样分布、参数估计和假设检验.doc》由会员分享,可在线阅读,更多相关《抽样分布、参数估计和假设检验.doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、【精品文档】如有侵权,请联系网站删除,仅供学习与交流抽样分布、参数估计和假设检验.精品文档.抽样分布一、抽样分布的理论及定理(一) 抽样分布抽样分布是统计推断的基础,它是指从总体中随机抽取容量为的若干个样本,对每一样本可计算其统计量,而个统计量构成的分布即为抽样分布,也称统计量分布或随机变量函数分布。(二) 中心极限定理中心极限定理是用极限的方法所求的随机变量分布的一系列定理,其内容主要反映在三个方面。1如果总体呈正态分布,则从总体中抽取容量为的一切可能样本时,其样本均数的分布也呈正态分布;无论总体是否服从正态分布,只要样本容量足够大,样本均数的分布也接近正态分布。2从总体中抽取容量为的一切可

2、能样本时,所有样本均数的均数()等于总体均数()即3从总体中抽取容量为的一切可能样本时,所有样本均数的标准差()等于总体标准差除以样本容量的算数平方根,即中心极限定理在统计学中是相当重要的。因为许多问题都使用正态曲线的方法。这个定理适于无限总体的抽样,同样也适于有限总体的抽样。中心极限定理不仅给出了样本均数抽样分布的正态性依据,使得大多数数据分布都能运用正态分布的理论进行分析,而且还给出了推断统计中两个重要参数(即样本均数与样本标准差)的计算方法。(三)抽样分布中的几个重要概念1随机样本。统计学是以概率论为其理论和方法的科学,概率又是研究随机现象的,因此进行统计推断所使用的样本必须为随机样本(

3、random sample)。所谓随机样本是指按照概率的规律抽取的样本,2抽样误差。从总体中抽取容量为的个样本时,样本统计量与总体参数之间总会存在一定的差距,而这种差距是由于抽样的随机性所引起的样本统计量与总体参数之间的不同,称为抽样误差。3标准误。样本统计量分布的标准差或某统计量在抽样分布上的标准差,符号SE或表示。根据中心极限定理其标准差为正如标准差越小,数据分布越集中,平均数的代表性越好。同理,在推断统计中,标准误越小,说明样本统计量与总体参数的之间越接近,即样本对总体的代表性越好,这时用样本统计量去推断总体就越可靠、越准确;相反,标准误越大,说明样本统计量与总体参数之间的差距越大,即样

4、本对总体的代表性越差,这时用样本统计量去推断总体就越不可靠、越不准确。所以说标准误是进行统计推断可靠性高低的指标。4自由度。一群数据或观测值可以独立自由变动的数目称为自由度,用符号或表示。在中, 。在计算方差或标准差时,因受的限制, ,即有方差。二、常用抽样分布在心理与教育统计中,常用的抽样分布有正态分布、渐近正态分布、分布、分布、分布和分布等等。(一) 正态分布及渐近正态分布当统计量的分布符合正态分布或渐近正态分布时,进行统计推论的理论依据即为正态分布的理论。以样本平均数为例,正态分布的应用情形如下。1总体呈正态,总体方差已知,则样本均数的分布也呈正态。根据中心极限定理则有 样本均数的均数等

5、于总体均数,即 样本均数的标准差等于总体标准差除以样本容量的平方根,即 差异检验值为2总体呈非正态,总体方差已知,样本容量足够大,样本均数的分布为渐近正态分布。根据中心极限定理,亦有 样本均数的均数等于总体均数: 样本均数的标准差等于总体标准差除以样本容量的平方根。 检验值(二)分布1分布的定义分布是由小样本统计量形成的概率分布。2分布的特点 t分布也是对称分布。即平均数位于曲线的中央,在这一点上有一个单峰,从中央向两侧逐渐下降,尾部无限延长,但不与基线相交。 分布曲线的形状易变,曲线不是一条而是一族,其曲线形状随着样本容量的变化而有规律地变动,即随自由度的大小而变化。 理论上,当时,分布曲线

6、以标准正态曲线为极限,即呈正态分布。当逐渐减少时,分布的离散程度逐渐增大,曲线逐渐与标准正态分离;其峰顶逐渐下降,尾部抬高。如图7-13所示 分布的值及对应的概率值()是根据自由度的大小由理论模型推导出来的,构成分布临界值,表见附表4。3分布的应用1)总体正态,未知,且30时,样本平均数的分布呈分布。分布的标准误为或因为总体标准差未知,只能以样本标准差来代替。而样本标准差与总体标准差的差距较大,统计学家发现总体标准差的良好无偏估计量为,即所以用代替则有上式 。分布的检验值为2)总体呈非正态,未知,30时,则样本均数的分布呈分布或渐近正态分布,其样本均数的标准误为或检验值为或此外,当未知时,两个

7、样本均数之差()的分布、相关系数的分布、回归系数的分布等也服从近似正态分布。参数估计第一节 统计推断的有关问题一、 什么是推断统计推断统计就是指由样本资料去推测相应总体情况的理论与方法。也就是由部分推全体,由已知推未知的过程。推断统计根据推测的性质不同而分为参数估计和假设检验两方面。参数估计是用样本去估计相应总体的状况,其具体方法有点估计和区间估计。假设检验的主要用途是对出现差异的两个或多个现象或事物进行真实性情况的检验,又称统计检验。它又为参数检验和非参数检验。参数检验法在检验时对总体分布和总体参数(,)有所要求,而非参数检验法在检验时则不依赖于总体的分布形态和总体参数的情况。二、统计推断的

8、基本问题进行统计推断时应首先考虑以下三个方面的问题。一是关于统计推断的基本前提。统计推断的前提是随机抽样。进行统计推断时,首先要了解抽样的方式,是随机抽取的,还是人为抽取的。二是样本的规模与样本的代表性。抽样研究需要有一定的样本规模,而样本要具有代表性也需要有一定的样本规模来保证,以减少抽样误差。值得注意的样本规模和样本代表性是建立在随机抽样基础之上的,否则即使样本再大也是无意义的。三是统计推断的错误要有一定限度。统计推断是在特定的时间、空间和条件下得出的结论,加上抽样误差的影响,在用样本推测总体时总会犯一定的错误。但这种错误要有一定的限度,统计推断中允许犯错误的限度是用小概率事件来表示。第二

9、节 参数估计的原理一、参数估计的定义所谓参数估计就是根据样本统计量去估计相应总体的参数。二、参数估计的方法(一)点估计点估计是在参数估计中直接以样本的统计量(数轴上的一个点)作为总体参数的估计值。良好点估计的统计量必须具备一定的前提条件。1无偏性无偏性要求在用各个样本的统计量作为估计值时,其偏差为0,即2一致性总体参数的估计量随样本容量的无限增大,应当能越来越接近它所估计的总体参数。此3有效性当总体参数的无偏估计量不止一个统计量时,则要分析无偏估计量的变异大小的情况。无偏估计量变异性小的,有效性较高;无偏估计量变异性大的,则有效性较低。用统计量样本均数作为总体参数的估计值是最佳选择。4充分性充

10、分性是指一个容量为的样本统计量是否充分地反映了全部个数所反映的总体信息。(二)区间估计区间估计是以一个统计量的区间来估计相应的总体,它要求按照一定的概率要求,根据样本统计量来估计总体参数可能落入的数值范围。区间估计是用两个数之间的距离或数轴上的一段距离来表示未知参数可能落入的范围。1区间估计的标准误2置信区间、置信系数和置信限在中有三个重要概念,置信区间、置信系数和置信限。置信区间是指在特定的可靠性(即置信系数)要求下,估计总体参数所落的区间范围,亦即进行估计的全距。以样本均数()为例,在估计总体均数()时,其置信区间为置信系数是指被估计的总体参数落在置信区间内的概率,或以表示。又叫置信水平、

11、置信度、可靠性系数和置信概率。置信系数是用来说明置信区间可靠程度的概率,也是进行正确估计的概率。一个置信系数同时反映了在做出一个估计时所犯错误的小概率(),即可靠性为95%时,意味着犯错误的概率为5%;可靠性为99%时,意味着犯错误的概率为1%。置信限是被估计的总体参数所落区间的上、下界限,即置信下限 置信上限例8-1:某次测验中有10个正误判断题,试问在置信系数为0.95时,能猜对多少道题?根据二项分布的平均数与标准差公式,有3置信区间与置信系数的关系在进行参数估计时,一般人首先想到的是选用一个较高的置信系数,以为这样就会得到一个精确度很高的估计值。然而,实际情况并非如此,一个较高的置信系数

12、并不意味着有一个较精确的估计。事实上高的置信系数会造成置信区间的扩大,而一种跨距很大的区间本身又会降低估计精确性,结果只能给我们一个非常模糊的估计数。如例8-1,0.95时,28;0.99时,19。因此置信系数和置信区间在估计时应综合考虑。当置信区间过于宽大时,即使估计达到了99%的置信系数,其估计结果可能很少有真实的价值;相反,置信区间过于狭窄,其估计与一个低水平的置信系数相联,估计结果的真实价值也值得怀疑。一般来说,最佳的估计既要求置信区间适度,又要求置信系数较高。第三节 总体均数的估计一、均数估计的标准误(一)标准误的定义式已知当总体2已知时,根据中心极限定理三有其区间估计公式为(二)标

13、准误的近似式未知二、总体均数的估计方法(一)正态估计法,2已知一是总体呈正态时,不论样本容量的大小,样本均数的分布都呈正态分布。二是总体呈非正态时,只要样本容量大于30,样本均数的分布呈近似正态分布。例8-2:已知某总体为正态分布,其总体标准差为10。现从这个总体中随机抽取n1=20,n2=30的两个样本,其平均数分别80和82。试问总体参数在0.95和0.99的置信区间是多少。1)分析条件,判断方法根据题目信息可知,总体分布为正态,且总体方差已知()已知,所以可用正态法进行估计。2)求样本均数的标准误3)求置信区间: D=0.95时,D=0.99时, D=0.95时,D=0.99时,4)结果

14、解释计算结果表明,以第一个样本进行估计时,其总体均数落在75.6184.39之间的可能性为95%,超出这一范围的可能只有5%;或者说可能在75.6184.39之间的正确估计概率为95%,错误估计概率为5%。而作出总体落在74.2285.78之间结论时的正确概率为99%,犯错误的可能性为1%。以第二个样本进行估计时,其总体均数落在78.4385.57之间的可能性为95%,超出这一范围的可能只有5%;总体落在74.4086.60之间可能性为95%,超出这一范围的可能性只有1%。(二)分布估计法,2末知应用条件是总体呈正态,样本容量无论大小,都可以采用分布估计法。不过,若30时,既可用分布法,也可用

15、近似正态估计的方法。例8-3:假设从某市随机抽取小学三年级学生60名,测得其体重平均为28公斤,标准差为3.5公斤。试问该市小学三学生的平均体重大约是多少?1)分析条件,判断方法本例总体分布为正态(因为人类身高的分布已知是正态的)。总体方差未知,但样本标准差已知,且样本容量大于30,既可用分布估计法,也可用近似正态估计法。此处用分布法。2)求均数的标准误样本均数的分布为七分布,其估计区间为 3)求置信区间分布的中置信系数D对应的值与正态分布中置信系数D对应的Z值不同。后者的不论样本容量的大小,其相同置信系数的Z值都相同,是一个常数。前者在相同的置信系数下,值会随样本容量或自由度的变化而不同。因

16、此,分布估计法的置信区间为为此,需根据自由度查附表2“分布显著性临界值表”,确定值。本例,时,所以有例8-4:现从某年级的数学成绩中(假设总体正态)随机抽取12名学生的成绩为93,70,90,92,69,95,82,83,88,81,84,77,试估计该年级的总体平均数在95%和99%置信度时的区间。1)分析条件,判断方法本例总体为正态,总体方差未知,且样本容量小于30,用分布估计法。因为原始数据,还需计算样本均数和标准差。2)计算样本均数和标准差3)求均数的标准误4)求置信区间当时,该年级学生的平均成绩有95%可能为78.2689.80分,有99%可能为76.0291.32分。(三)近似正态

17、估计法总体分布为非正态时,只要30就近似正态估计法。例8-5:某校100名参加进行了一次化学效标参照测验(已知总体分布为偏态),其平均成绩为52.1分,标准差为9.7分,试问以95%的置信度进行估计该校所有学生的化学平均成绩会落在什么范围?1)分析条件,判断方法总体分布为非正态,总体方差未知,但样本容量大于30,只能用近似正态估计法。2)求均数的标准误或或因为,当样本容量足够大时,是否减1,影响不大,况且又是近似估计,也无需那样精确。3)求置信区间当D=0.95时,假设检验两均数差检验第一节 假设检验的原理与方法一、差异及差异显著性检验(一)差异产生的可能情况所谓差异是指两个或多个事物之间出现

18、差别或不同。差异问题主要来自两大方面。一种是事物本身存在着差异,称为真实的差异或实质性差异;一种是因抽样的随机性而出现的抽差误差。抽样误差在统计上是忽略不计的,被视为不存在真正的差异。(二)差异显著性检验事物出现差异,可能是误差,也可能是实质性差异。究竟属于哪种情况,必须借助统计方法进行分析、权衡,才能作出合乎逻辑的结论。若经统计检验发现差异超过了所规定的某一误差限度,表示差异已不属误差了,这在统计上称差异显著。若未达到规定的误差限度,表明属误差,亦称差异不显著。这种对事物差异所进行的检验就是差异显著性检验。(三)差异显著的界限差异需要达到什么样的误差界限才算显著呢?统计中得利用小概率原理作拒

19、绝假设或接受假设的依据,若抽样结果是小概率事件就拒绝假设,否则就接受假设。通常把概率不超过0.05(即5%)或0.01(即1%)作为抽样误差的限度。二、假设与假设检验科学理论的建立需经过四个阶段,即发现问题、提出假设、形成假说、建立理论。在假设过程中一般需要提出两个基本假设,一是研究假设,二是与之对立的虚无假设。(一)研究假设(alternative hypothesis)研究假设就是实验人员希望证实的假设。从内容上看,研究假设是假设两个样本统计(或两个总体参数)之间,又或者是样本统计量与总体参数之间存在真实的差异,是一种有差假设。表达方式有二,即或; 或。(二)虚无假设虚无假设是研究人员为了

20、证实研究假设是真的而利用概率论的反证法所进行的假设,即从研究假设的反面进行假设,用符号表示。建立起虚无假设目的是希望通过检验说明虚无假设是假的,以此来证明研究假设是真的。因此,假设检验都是从虚无假设开始的。从内容上看,虚无假设是假设两个总体参数之间或样本统计量与总体参数之间不存在真正的差异,其现存的表面差异是由抽样所造成的误差,是一种无差假设,又称零假设或原假设。表达方式有二,即或表示; 或。三、显著性水平(一)显著性水平的意义显著性水平指拒绝虚无假设的小概率值。从理论上说,显著性水平的理论依据来自小概率事件来。统计中一般认为概率小于或等于0.05的随机事件属小概率事件。若随机样本统计量的数值

21、在抽样分布上出现的概率等于或小于这些小概率值,就以小概率事件拒绝虚无假设。从直观上看,当两个总体均数相等时,和会落在Z轴的同一点上,即处,当和有差异时,则会产生差距,其差距在Z轴上达到或超出1.96时,就被认为出现显著差异,因此1.96之内称接受虚无假设的概率区,其包含的面积达95%。只要两均数差异检验的值落入该区域,就认为差异不显著,这时应接受虚无假设而拒绝研究假设。而1.96之外称则拒绝虚无假设的小概率区,其包含面积为5%,称小概率值,即。只要两均数差异检验的值落入这一区域,就认为存在显著差异。这时应拒绝虚无假设而接受研究假设。(二)差异显著性的判断规则表9-1 Z值、值与差异显著性的关系

22、值显著性符号表示1.960.05不显著1.960.05显 著*2.580.01极显著*表9-2 值、P值与差异显著性的关系表值差异显著性符号t(n)0.050.05不显著t(n)0.050.05显 著*t(n)0.010.01极显著*值得注意的是,显著性水平的取值实际上是因事物的性质、统计的要求及研究者的需求不同确定的。虽然我们比较习惯取=0.05和=0.01,但也可以取其它的显著性水平值,如0.005或0.001。小概率值越小,表明显著性水平越高;反之,显著性水平越低。(三)显著性水平与与置信水平的关系假设检验和参数估计都试图回答两个相同的问题,一是样本信息能告诉我们关于总体的什么信息,二是

23、据此我们能推论出什么结论。假设检验是当样本统计量超过一定的标准(如0.05的显著性水平)时,就说统计显著(即拒绝零假设),而参数估计则是要找到总体值所落入的可靠范围。而作为两者代表性指标显著性水平和置信水平也是从不同的角度回答相同的问题,因此,两者一起使用比单独使用更能清楚地显示数据的情况。四、差异显著性的检验方法 (一)双尾检验双尾检验是把拒绝性的概率值置于理论分布的两端或两侧,也称双侧检验。双尾检验是在研究人员还不能确定两种处理所得结果谁优谁劣,检验的目的只是确定事物之间是否存在明显差异时所采取的检验方法。这时只要1.96或|t|,即实际计算的值落在拒绝区域,就可以推断两个均数之间的差异是

24、显著的。所以,双尾检验的实际意义是只推断差异是否存在,而不大断言差异的方向。双尾检验时其显著性水平值的标记方法为=0.05/2或=0.01/2。(二)单尾检验单尾检验是把拒绝性概率值置于理论分布的一尾或一侧,也称单侧检验。这种检验方法是研究者根据已有的资料事先能够预料到谁优谁劣,检验只是为了进一步确证而选择的方法。单尾检验因拒绝性概率是置于理论分布的右侧还是与左侧,又分为左尾检验和右尾检验。1右侧检验。右侧检验是把拒绝性概率值置于理论分布的右侧,见图9-4。当研究人员能够预料到一个总体的参数(如1)大于另一个总体的参数(2)时,可采用右侧检验。其假设形式为H0:12 或 12 Ha:122左侧

25、检验。左侧检验是把拒绝性概率值置于理论分布的左侧。当研究者能够预料一个总体参数(1)小于另一个总体参数(2),可采用左侧(尾)检验。其假设形式为H0:12 Ha:12注意:在同一个显著性水平上,单尾检验和双尾检验的临界值()是不同的。表9-3 两种检验方法临界值、 值和显著性水平的比较表双侧检验的单侧检验的差异显著性1.960.05不显著1.961.6450.05显著2.582.330.01极显著五、统计决策的两类错误(一)错误和错误错误是指虚无假设本身是正确的,但由于抽样的随机性而使检验值落入了拒绝虚无假设的区域,致使我们作出了拒绝虚无假设的结论,又称I型错误(type error)。犯错误

26、的概率是检验之前经过深思熟虑所选定的显著性水平值。错误是指虚无假设本身不正确,但由于抽样的随机性而使检验值落入了接受虚无假设的区域,致使我们作出了接受虚无假设的结论,说明事物之间没有显著的差异,又称型错误(type error)。接受拒绝为真正确决策错误为假错误正确决策(二)错误和错误的关系及控制如前所述,建立虚无假设的目的并不在于证明它的正确性,而是随时准备拒绝它。因此在拒绝待检验的虚无假设(H0)的同时,我们就在冒犯错误的风险。因为虚无假设的客观真伪性我们并不知道,显著水平值标志着冒这种风险的可能性大小。所以理想的办法就是把冒这种风险的可能性尽量减小。然而显著性水平值和犯错误的概率之间又存

27、在着一种密切关系,即减小了犯错误的风险,必定会增大犯错误的风险;同样,减小犯错误的风险,又会增大犯错误的风险。由此可见,想要同时减小犯两类错误的风险是不切实际的。对于错误来说,可以通过控制显著性水平来减小犯错误的概率。一般而言,如果实验条件控制的较好的话,可以取=0.05;如果实验条件难以控制,则可以取=0.01或更高的显著性水平值。错误与错误不同,它并不是检验之前规定的。影响的因素主要有三。一是在参数检验中,依赖于参数的实际值与假设值之间的距离。实际值与假设值相差越大,会越小。二是与检验前选定的有关,越小,越大,因此要同时降低和,需要增加样本容量()。三是当和固定时,根据研究问题性质选择适当

28、的检验类型可以减小。由此可见,对于错误而言,控制是比较困难的。因此一般在规定的下,采用增大样本容量的方法来尽量减小。六、假设检验的基本步骤(一)提出(或建立)假设。即同时建立虚无假设Ho和研究假设Ha。(二)规定或选择显著性水平。在教育与心理统计中常选择=0.05和=0.01。所以在实际检验中,这一步骤可省略。(三)计算检验值。计算假设检验中的各种统计量。(四)比较与决策。将计算的检验值与相应的临界值进行比较做出统计决策。第二节 两均数差检验的条件与问题一、均数之差检验的前提条件(一)统计量来自随机样本(二)总体呈正态分布(三)总体的方差齐性总体方差齐性是指两个总体之间的方差相等或一致,即。二

29、、检验两均数差应考虑的问题(一)总体情况总体方面,一要考虑总体的分布情况,是正态的还是非正态的;二要考虑总体方差值,是已知的还是未知的;三要考察总体方差的一致性,是齐性的还是不齐性的。这些内容的不同,其检验方法也不同。(二)样本类型1独立样本。独立样本是指从两个无关的总体中随机抽取的两个或多个样本,或者说是独立抽取的,彼此间的数据不存在对应关系的样本。2相关样本。相关样本是从具有一定程度相关的总体中抽取的两个或多个样本,亦即彼此的观测值之间存在一一对应关系的样本。在相关样本中,常见的形式有两种:一是同组比较,即同一组被试先后接受两种不同的实验处理,得到两组具有对应关系的数据。二是配对比较,即先

30、将同质的被试两两配对,再把各对中的两个被试分别分开,让其接受不同的实验处理,这样也可以得到两组一一对应的数据。这种用配对方式得到的相关样本称配对样本。 (三)总体情况、样本含量与数学模型的关系在两个均数的检验中,常用数学模型是正态分布模型,分布模型和近似正态分布。表9-4 总体情况、样本情况、数学模型及检验方法的关系表检 验 方 法检验检验检验总体情况正态分布,2已知n不论大小n302未知正 态n30n不论大小n30非正态n30n30数学模型正态分布模型分布模型近似正态模型另外,当总体非正态,且样本容量小于30时,上述理论分布模型均不适用。可进行非参数检验,或是进行数据转化再进行参数检验。第三

31、节 单样本均数之差的显著性检验一、检验方法单总体平均数差异的显著性检验是指检验一个样本均数与相应总体均数之差(即)是否显著的统计方法。表9-5 单总体均数之差检验的方法选择及计算内容检验方法总体情况均数标准误检验值检验正态2已知检验2未知检验非正态n302已知2未知二、条件分析1确定是双尾检验,还是单尾检验。2明确总体方差2是已知的,还是未知的。3分析总体分布是正态的,还是非正态的。.4决定是采用检验,还是检验,又或是检验。三、综合训练例9-1:法律专业一学生想检验某教授的观点,即犯轻微诈骗罪的犯人一般在监狱平均拘留8个月。他从法院的卷宗里随即抽取了70份这样的案例,得到平均数8.2个月,标准

32、差2.2个月。能否根据测试结果否定教授的结论?(假设总体分布为非正态)1)条件分析由题目条件可知,总体分布为非正态,总体方差未知,样本容量大于30,且为双尾检验,故应选择检验。2)检验过程 建立假设Ho:样本均数的总平均(X)与总体均数(0)无显著差异,即x=0Ha:样本均数的总平均(X)与总体均数(0)有显著差异,即x0 计算检验值均数的标准误:检验值: 比较与决策因为,0.770.05,接受Ho,拒绝Ha。例9-2:根据某标准化阅读理解测验的规则,8年级的学生的平均应达到73.2分,标准差为8.6分。如果从某校区随即抽取45个样本,其均数为76.7。试问该校区的阅读理解测验的平均成绩是否显

33、著高于全体8年级学生的成绩?1)条件分析由题目条件可知,总体分布为正态(标准测验),总体方差已知,样本容量大于30,且为单尾检验,故应选择检验。2)分析过程与方法 建立假设。Ho:,即该校阅读理解测验成绩显著高于8年级的成绩 计算检验值均数的标准误:检验值: 比较与决策。因为Z=2.73Z0.05/1=1.645,拒绝Ho,接受Ha。例9-3:在一项空间知觉能力测试后,随机抽取6名被试的成绩为1.4、1.8、1.1、1.9、2.2、1.21,这些数值是否能证明“这种能力测试平均数一般为1.5”的论断?1)条件分析由题目条件可知,总体分布为正态(能力测验),总体方差未知,样本容量小于30,且为双

34、尾检验,故应选择检验。2)检验过程与方法 建立假设:=1.5:1.5 计算检验值均数的标准误: 比较与决策当自由度为时,;因为0.05,接受虚无假设,拒绝研究假设,差异不显著。例9-4:某市46年级进行了标准化综合测验,平均分100。六年级388人,平均分109,标准差9分。试问六年级平均分与46年级平均分有无显著差异?1)条件分析由题目条件可知,总体分布为正态(标准化测验),总体方差未知,样本容量大于30,且为双尾检验,故可选择检验或检验。2)检验过程与方法 建立假设 计算检验值均数的标准误: 检验值: 比较与决策当自由度为时,;因为, ,。差异极显著,拒绝虚无假设,接受研究假设。例9-6:

35、从某学区六年级随机抽取两所学校50名学生的数学期末考试成绩(总体成绩分布为非正态),得知甲校平均分为85.82,标准差14.59;乙校平均分82.81,标准差15.12。试向两校学生数学平均成绩有无显著差异。1条件分析根据题意,可知总体为非正态,总体方差未知,样本为独立,样本容量大于30,为双侧检验,可选择检验2建立假设Ho:Ha:3计算检验值均数之差的标准误:检验值; 4比较与决策因为,即处于之内。所以,差异不显著,接受虚无假设,接受研究假设,说明两校学生数学期末平均分没有明显的差别。例9-7:某学区三年级184人参加了一次标准化词汇理解和阅读理解的测试,测试结果都进行了标准化处理,现已知词

36、汇理解的平均分为10.99,标准差为0.43;阅读理解的平均分为10.75,标准差为0.47,两个测验的相关系数为0.48。试问三年级学生的词汇理解成绩是否显著高于阅读理解成绩?1条件分析根据题意,可知总体为正态(标准化测验),总体方差未知,样本为相关,样本容量大于30,为单侧检验,可选择检验或检验。2建立假设:Ho:Ha:3计算统计量均数之差的标准误: 检验值: 4比较与决策因为,差异极显著,拒绝虚无假设,接受研究假设。例9-8:一种新型催眠药正在一些自愿者身上进行实验(假设总体正态)。研究者想预测该药物对男性和女性的效果有无不同。有6名男性和8名女性志愿参加实验,他们服用了两周时间。其中,

37、男性的睡眠是4,6,5,4,5和6小时;女性的睡眠是3,8,7,6,7,6,7和6小时。试问该药对男女性的睡眠是否有不同的效果?1条件分析根据题意,可知总体为正态,总体方差未知,样本为独立,样本容量小于30,为双侧检验,可选择检验。2建立假设Ho:Ha:3检验统计量首先,求平均数和标准差,有其次,求均数之差的标准误最后,求检验值4比较与决策当时,。因为,差异不显著,接受虚无假设,拒绝研究假设。例9-9:在一项对家庭规模和智力的相关研究中,采用韦氏儿童智力测验进行测试。结果抽取的40个独生子女的平均智商为101.5,标准差为6.7,抽取的50个来自双生子女家庭的老大的平均智商为105.9,标准差为5.8。试问独生子女与非独生子女的智商有无显著差异?1条件分析根据题意,可知总体为正态,总体方差已知(韦氏智力测验),样本为独立,样本容量大于30,为双侧检验,可选择检验2建立假设Ho:Ha:3计算检验值均数之差的标准误:检验值: 4比较与决策因为,差异不显著,接受虚无假设,接受研究假设。

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 小学资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁