《我国国民收入影响因素的实证分析.doc》由会员分享,可在线阅读,更多相关《我国国民收入影响因素的实证分析.doc(6页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、【精品文档】如有侵权,请联系网站删除,仅供学习与交流我国国民收入影响因素的实证分析.精品文档.我国国民收入影响因素的实证分析【摘要】本文在对国民收入影响因素分析的基础上,利用19822013年时间序列数据,研究了国民总收入、国民可支配收入、国民总储蓄、国民总储蓄率、国内总储蓄、国内总储蓄率和国民总支出的关系,并对其进行了检验。关键词 国民收入 总储蓄 总支出 影响因素 引言 国民收入,作为一国经济发展的重要指标,对经济的增长,企业的投资,以及居民的日常消费有着密不可分的影响。自改革开放以来,我国的国民收入从1982年的5330.5亿元到2013年的566130.2亿元,短短的31年的时间里,国
2、民收入增加了100倍多,极大程度地促进了投资,消费,与进出口史无前例的增长,而这一现象,无论是在中国的历史上,还是在同期发达国家的发展进度上,都是屈指可数。为此,我们在根据宏观经济理论的基础上,利用19822013的相关数据。对国民收入的理论及其内部因素相互间影响着实分析。一、 问题来源 改革开放以来,中国经济以超快的速度发展,以平均每年7%的速度连续20年增长,2005年GDP已升至世界第四位。经济的大幅度的增长,特别是外贸的快速发展,使人民币面临着空前的升值压力。中国中央银行采取人民币缓慢上升的策略,在外汇市场上大量放出货币,而在国内市场上又大量回收货币。2006年至2007中央银行动用了
3、准备金工具就达十次之多。年本文选取了1982-2013年的数据,应用计量经济学所学过的知识进行定量分析,试图回答在中国经济发展中GDP影响因素的分析。3模型分析阶段 为了能让我们更好地分析模型,为此搜集19822013年间的上述变量的数据如表1:表1 国民收入模型数据表时间国民总收入国民可支配收入国民总储蓄国内总储蓄国民总支出消费19825330.55339.651891.51875.254993714.819835985.65995.652122.82089.86165.44126.419847243.87254.012562.352516.47361.44846.319859040.790
4、47.873122.243090.49443.85986.3198610274.410287.433698.953686.710763.76821.8198712050.612058.954473.144472.812266.67804.6198815036.815052.425558.75549.115539.79839.5198917000.917015.266170.056147.117496.911164.2199018718.318731.437320.917257.318837.512090.5199121826.221870.398574.388485.521959.914091
5、.9199226937.32700110439.3910361.927289.617203.319933526035327.5615031.8315038.237617.621899.9199448108.548223.6921001.0320975.249583.329242.2199559810.559930.2825605.2526468.762218.336748.2199670142.570487.2129387.0130244.172704.443919.5199778060.978487.2133032.0833517.978108.648140.6199883024.38337
6、8.533919.6234943.482902.451588.2199988479.288888.4134699.4335488.188588.455636.9200098000.598522.9336541.383723396358.8615162001108068.2108771.1341210.0642094.1106703.2966878.32002119095.7120170.4148496.8248659.1117381.5271691.22003135174136421.2259526.3858927.91133648.5177449.52004159586.8161348474
7、874.5273404.01156720.9987032.92005183618.5185572.3688700.8788065.88177214.3796918.32006215883.9218141.89111436.14109608.68206057.93107356.92007266422269243.26137799.26134366.3243176.11145826.62008316030.34319027.56167534.21162552.07291747.8157184.92009340319.95342482.56181080.02179500.27333738.02169
8、274.82010399759.54402513.77209702.49208701.51387718.871941152011468562.38470145.47237549.04240507.62460455.83232111.52012518214.7518431.5266367.01267405.61514766.87261993.62013566130.2565589.3291251.48294507.39572521.76292165.6由相关图可知,解释变量与被解释变量之间存在线性相关关系,为此,可建立如下可支配收入、教育年限与书刊消费的多元线性回归模型五 模型的估计与调整 用最
9、小二乘法,利用Eviews软件可得估计结果如下报告形式:Y = -148.3294037 - 0.0007587679411*X1 + 1.819362658*X2 - 1.297053969*X3 + 0.4844378574*X4 + 0.5073109963*X5(871.4483) (0.002024) (0.603582) (0.7525251674) (0.146221) (0.129636)T=(-0.374959) (-0.374959) (3.014276) (-1.723602) (3.313059) (3.913341)R2=0.999800 0.999762 F=260
10、16.38 S.E=2503.048 D.W=1.4574902)拟合优度检验:判定系数R2=0.9998,接近于1,表明回归模型对样本观察值拟合程度高,即Y的变化中有99.98%可以由X1,X2,X3,X4,X5来解释。3)F 检验 F=26016.38大于临界值=2.59, 或其Prob(F)值0.00000也明显小于,拒绝原假设,回归系数、和至少有一个显著地不等于0,说明模型线性关系显著即X1,X2,X3,X4,X5联合起来对Y有显著影响。4)T检验t检验表明:=-0.374959,小于临界值=2.056,或从Prob()=0.7107也可看出明显大于,接受原假设,显著地等于0,表明X1
11、对Y无显著影响;=3.014276大于临界值=2.228,或从Prob()=0.0012也明显小于,拒绝原假设,显著地不等于0,表明预期通货膨胀率X3对实际通货膨胀率Y都有显著影响。=-1.723602小于临界值=2.228,从Prob()=0.3838大于,接受原假设,显著地等于0,表明预期通货膨胀率X3对实际通货膨胀率Y都无显著影响=3.313059小于临界值=2.228,从Prob()=0.3838大于,接受原假设,显著地等于0,表明预期通货膨胀率X3对实际通货膨胀率Y都无显著影响=3.913341小于临界值=2.228,从Prob()=0.3838大于,接受原假设,显著地等于0,表明预
12、期通货膨胀率X3对实际通货膨胀率Y都无显著影响,得相关系数矩阵为:(1)多重共线性检验利用相关系数可以分析解释变量之间的两两相关情况。在Eviews软件中可以直接计算相关系数矩阵。本例中,在Eviews软件命令窗口中键入:COR y X1 X2 X3 或在包含所有解释变量的数组窗口中点击ViewCorrelations,其结果如图1所示。操作命令:Cor y x1 x2 x3 由上表可以看出,解释变量之间相关系数至少为0.537690,表明模型存在严重的多重共线性。辅助回归模型检验及方差膨胀因子检验:当解释变量多余两个且变量之间呈现出较复杂的相关关系时,可以通过建立辅助回归模型来检验多重共线性
13、。本例中,在Eviews软件命令窗口中分别键入下列操作步骤,结果如下:操作命令:ls x1 c x2 x3 x4 x5 Genr VIF1=1/(1-0.996185)X1 = 309.7492556 + 0.7837793882*X2 + 0.5336865403*X3 - 0.08519190217*X4 + 0.007883293867*X5R=0.996185,F= 979.192,prob(F)= 0.000000VIF1=1/(1- R)=1/(1-0.996185)=262.1232, TOL1=1/VIF1操作命令:ls x2 c x1 x3 x4 x5Genr VIF2=1/
14、(1-0. 997437)X2 = -2178.738401 + 0.6065795755*X1 - 0.2810604053*X3 + 0.08296811926*X4 + 0.02531311407*X5R=0.997284,F= 1377.086,prob(F)= 0.000000 VIF2=1/(1- R)=1/(1-0.997284)= 368.18851, TOL2=1/VIF2操作命令:ls x3 c x1 x2 x4 x5Genr VIF3=1/(1-0.997029)X3 = 550.3404638 + 1.028924602*X1 - 0.7001692369*X2 + 0
15、.1686903967*X4 - 0.01904547075*X5R=0.996964,F= 1231.482,prob(F)= 0.000000 VIF3=1/(1- R)=1/(1-0.996964)= 329.38076, TOL3=1/VIF3操作命令:ls x4 c x1 x2 x3 x5Genr VIF4=1/(1-0.997091)X4 = 5984.404305 - 4.525903944*X1 + 5.695401142*X2 + 4.648363422*X3 - 0.05211728108*X5R=0.997006,F= 1248.772,prob(F)= 0.000000
16、 VIF4=1/(1- R)=1/(1-0.997006)= 334.00134, TOL4=1/VIF4操作命令:ls x5 c x1 x2 x3 x4Genr VIF5=1/(1-0.974837)X5 = 68338.5606 + 3.121084841*X1 + 12.94939533*X2 - 3.911040093*X3 - 0.3883940712*X4R=0.977037,F= 159.5556,prob(F)= 0.000000 VIF5=1/(1- R)=1/(1-0.977037)= 43.548317, TOL5=1/VIF5模型F统计量F的伴随概率方差膨胀因子VIF容
17、许度TOLX1=f(X2,x3)0.9971684225.8950.00000353.107344633467.726847521X2=f(X1,x3)0.9888331062.5580.000000.01116789.549565684X3=f(X1,x2)0.9978625601.2630.000000.002138467.726847521上述辅助回归模型的F统计量,其伴随概率均接近于零或小于显著性水平0.05,表明模型存在严重多重共线性,这一结论也可通过各方差膨胀因子(VIF)均大于10和容许度均小于0.1中得到。(2)逐步回归法由相关系数图表可知,Y与X2相关系数最大,故先建立Y与X
18、2的一元基本线性回归模型:Ls y c x2估计结果如下:以上述一元线性回归模型为基本模型,顺次引入其他变量估计二元回归模型,结果如下:Ls y c x2 x1Ls y c x2 x3Ls y c x2 x4Ls y c x2 x5经比较可知,新加入X5的回归模型Y=f(x2,x5),X5回归系数为负,不符合实际的经济意义且T检验不通过;新加入X3的回归模型 Y=f(x2,x3)及新加入X4的回归模型Y=f(x2,x4)虽经济意义合理,但X3和X4回归系数的T检验不通过;新加入X2的回归模型Y=f(x2,x1) 不仅经济意义合理、回归系数T检验通过,而且比一元回归模型Y=f(x2) 的提高,因
19、此,Y=f(x2,x1)估计的结果为最优的二元回归模型,以此为基础,建立三元回归模型:三、检验异方差性(1) 相关图分析法Sort x Scat x y由相关图知模型存在递增型的异方差( 2) Goldfeld-Quanadt 检验步骤如下:将样本X按递增顺序排序,去掉中间1/4的样本,即C=32/4=8,8再分为两个部分的样本,即n1=n2=(32-8)/2=12。 分别对两个部分的样本求最小二乘估计,得到两个部分的残差平方和RSS1和RSS2,即Sort xSmpl 1982 1993Ls y c xRSS1=Smpl 2002 2013 Ls y c xRSS2 =求F统计量GENR F =、/82612251/686.9371