数列与不等式.doc

上传人:豆**** 文档编号:17603266 上传时间:2022-05-25 格式:DOC 页数:13 大小:673.50KB
返回 下载 相关 举报
数列与不等式.doc_第1页
第1页 / 共13页
数列与不等式.doc_第2页
第2页 / 共13页
点击查看更多>>
资源描述

《数列与不等式.doc》由会员分享,可在线阅读,更多相关《数列与不等式.doc(13页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、【精品文档】如有侵权,请联系网站删除,仅供学习与交流数列与不等式.精品文档.专题测试数列与不等式数列与不等式均是高中数学中的重要内容,所以在高考中占有重要的地位. 高考对这两部分的考查比较全面,在近年来的全国各地高考试题中,常常综合在一起考查这两部分知识,尤其是在解答题中较为明显. 在高考试题中,数列与不等式这部分知识所占分值大约是20分. 解答题多为中等以上难度的试题,突出考查考生的思维能力,解决问题的能力,试题有较好的区分度. 有关数列的综合题,经常把数列知识与不等式的知识综合起来,其中还蕴含着丰富的数学思想,通常要用到放缩法以及函数思想(求函数的最值等). 这就要求考生能够灵活地运用相关

2、数列的性质与不等式的方法去解决相关问题. 估计2008年全国各地的高考试题中仍会出现数列与不等式的综合问题,因此考生在复习过程中应当注意掌握数列与不等式中的常见方法,并注意积累一些特殊的方法,从而做到灵活处理相关的问题.本试卷分第卷(选择题)和第卷(非选择题)两部分. 满分为150分,考试时间为120分钟.第卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1在数列an中,a1=14,3an=3an+1+2,则使anan+20成立的n值是( ) A.21 B.22 C.23 D.242已知数列an的前n项和Sn=n2

3、-9n+2008,则满足5ak8的k=( ) A.9 B.8 C.7 D.63.(理)已知数列an的通项公式是(其中nN*),那么数列an的最大项是( ) A.a2006 B. a2007 C. a2006或a2007 D. a2008 (文)已知数列an的通项公式是an=-n2+n(其中nN*)是一个单调递减数列,则常数的取值范围( ) A.(3,+) B.(-,3) C. D.4数列an的通项公式是关于x的不等式x2-xnx(nN*)的解集中的整数个数,则数列an的前n项和Sn=( ) A.n2 B.n(n+1) C. D.(n+1)(n+2)5若数列an、bn的通项公式分别是an=(-1

4、)n+2007a,且anbn,对任意nN*恒成立,则常数a的取值范围是( ) A.(-2,1) B. C. D.(-2,)6在等差数列an中,a100且a11|a10|,Sn是数列an的前n项和,则使Sn0的n的最小值是( ) A.21 B.20 C.10 D.117(理)已知首项为a、公比为q(0|q|m(其中n、mN*),Sn- Sm的最大值是( ) A.5 B.10 C.15 D.209已知等差数列an的前n项和是Sn,且a1=2008,且存在自然数p10,使得Sp=ap,则当np时,Sn与an的大小关系是( ) A.anSn B.anSn C.anSn D.an Sn10已知等差数列a

5、n的前n项和是,则使anN B.MTn+1?若对一切正整数n,总有Tnm,求m的取值范围.18(本小题满分12分)(理)已知数列an是首项为q、公比为q的等比数列(其中q0且q1),设(其中nN*).(1)当q=2时,求数列bn的前n项和为Sn; (2)在(1)的条件下,求的值; (3)当时,在数列bn中,是否存在最小的自然数n,使得对任意的mn(mN*),都有bmbn?证明你的结论.(文)数列an的通项公式是an =(其中nN*),前n项和为Sn.(1)化简数列an的通项公式an;(2)求证:19(本小题满分12分)医学上为了确定某种传染病在传播过程病毒细胞的生长规律及其预防方法,通常将这种

6、病毒细胞m个注入一只小白鼠的体内进行试验.在试验过程中,将病毒细胞的数量(个)与时间(h)的关系记录如下表:时间(h)1234567病毒细胞总数(个)m2m4m8m16m32m64m 已知该种病毒细胞在小白鼠体内的数量超过m106个时,小白鼠将死亡,但有一种药物对杀死此种病毒有一定的效果,在最初使用此药物的几天内,每次用药可杀死其体内该病毒细胞的98%. (1)为了使小白鼠在试验过程中不死亡,第一次最迟应在何时注射该种药物? (2)第二次最迟应在何时注射该种药物,才能维持小白鼠的生命?(答案精确到小时,参考数据:lg 2=0.301 0)20(本小题满分12分) 已知函数f (x)=x+1,点

7、(nN*)在y = f -1(x)上,且a1=a2=1. (1)求数列an的通项公式; (2)设,若Snm恒成立,求常数m的取值范围.21(本小题满分12分) 已知数列an满足:a1=2,a2=3,2an+1=3an-an-1(n2).(1)求数列an的通项公式an;(2)求使不等式成立的所有正整数m、n的值.22(本小题满分12分) 已知点P1、P2、P3、Pn、顺次为曲线xy=(x0)上的点(如图所示),点Q1、Q2、Q3、Qn、顺次为x轴上的点,且OP1Q1、OP2Q2、Qn-1PnQn、均为等边三角形. 记点Qn(cn,0),Pn(an,bn) (其中nN*). (1)求数列cn(nN

8、*)的通项公式; (2)(理)求数列an(nN* )的通项公式及的值; (文)求数列an(nN* )的通项公式. (3)(理)求证:(其中nN* ).(文)求证:(其中nN* ).参考答案1A 由已知得an+1-an=,an=14+(n-1)()=,anan+2=0,(n-20)(n-22)0,20n22,因此n=21,选A.2B 由题意得an=,由5ak8得 5-10+2k8,k0,当n1,an+1 an且a2007=a2006;当n2007时,1,an+1 an. 综上所述,数列an的最大项是a2007=a2006. (文)B an+1- an = -(n+1)2 +(n+1)+n2-n=

9、-2n-10得2n+1,其中nN*,因此3.4C 由x2-xnx得0xn+1,nN*,因此an=n,Sn=,选C.5C 当n是奇数时,由anbn得a2-,a1;当n是偶数时,由anbn得-a-a10,a11+a100,2a1+19d0,2a1-19d.令Sn=na1+d=n0即2a1+(n-1)d0,而2a1+(n-1)d-19d+(n-1)d=(n-20)d,需(n-20)d0,又d0,因此n20,选B.7(理)由题意得(1-q2)S=(1-q2)=a(1+q)=q, a=1-,又0|q|1,01+q2且1+q1,a0得4n0,因此ap-1p时,Sn-1=a1+a2+an-1Sp-1=0,S

10、n=Sn-1+anSn.10B 设数列an的公差是d,则,且a1,d=-1且a1=2,an=2-(n-1)=3-n2009,因此使anp.因此结合各选项知选C.12A 设一月份投入的建设资金与一月份的利润均为a,每月增加投入的百分率为r,则各月的利润依次组成一个数列an,其中an=na(1n12,nN*),各月的建设资金依次组成一个数列bn,其中bn=a(1+r)n-1(1n12,nN*),由于a1=b1,a12=b12,结合函数y=ax与y=a(z1+r)x-1的图象可知a2b2,a3b3,a11b11,因此MN.13(理)-1 由题意得a1+a9,3-13a=1=30,-1a14(理)20

11、 由题意得,经过n次这样的折叠后其厚度是0.12n mm,令0.12n100103=105得,2n106,n,因此经过20次这样的折叠后其厚度开始大于100 m.(文)20 当此设备使用了n年时,此设备的平均费用是500=20500,当且仅当=n,即n=20时取得等号.15 由已知得2b2=a2+c2,cosB=,因此sinB=.16(理)10 依题意得(n2),又bn+cn=1,则+cn=1,=1,由b1=c1,b1+c1=1得b1=c1=,则cn=,bn=,所以an=bn-bn-1=n(n+1),因此数列中最接近108的项是第10项. (文)x=y 由等比数列的性质知(S20-S10)2=

12、S10(S30-S20),即S10S30-S10S20,也即=S10(S20+S30),则x=y.17(1)设公差为d(d0),则有=a1a4,(2+d)2=2(2+3d),由此解得d=0(舍去)或d=2,因此an=2+2(n-1)=2n; (2)由(1)得n(n+1), ,即n2(nN* );=1,T2=T3=,又n2时,TnTn+1,各项中数值最大值为,对一切正整数n,总有Tnm恒成立,因此m. 命题动向 近年来的全国各地的高考试题中,有关等差、等比数列的定义、通项公式以及前n项和公式的基本考查常有出现,这就要求考生对于这方面的知识比较熟悉,做到灵活地使用,同时注意与其他知识间的联系.18

13、(理)(1)当q=2时,an=2n,bn=2nlog22n=n2n,Sn=121+222+n2n , 2Sn=122+223+(n-1)2n+n2n+1 , 由-得,-Sn=21+22+2n-n2n+1=-n2n+1=2n+1- n2n+1+2, (2)由(1)得; (3)当q=时,存在最小的自然数n=2008,使得对任意的mn(mN*),都有bmbn.证明如下: 当q=且n2008时,an=,bn=nlog2,bn+1-bn=(n+1)log2-nlog2=log20,由于10,log20,-0,即bn+1bn,数列bn从第2008项开始各项随着n的增大而增大,故存在最小的自然数n=2008

14、,使得对任意的mn(mN*),都有bmbn.(文)(1)由an= ,an=,即an= ,由+得2an=2n,则an=n2n-1;(2)由an=n2n-1得Sn=120+221+322+n2n-1 ,2Sn=121+222+323+(n-1)2n-1+n2n ,由-得-Sn=1+21+22+2n-1-n2n=2n,Sn=(n-1)2n+1,因此. 规律总结 有关数列前n项和的求解问题,具体问题应当进行具体分析. 当一个数列的各项是由一个等差数列和一个等比数列的对应项之积所构成,则此时可采用错位相减法. 把其前n项和的表示式两边同时乘以公比,然后两式相减,从而求解. 当一个数列an满足:a1+an

15、=a2+an-1=时,可考虑采用倒序相加法来求其前n项和.19.(1)设第一次最迟在第n(h)时注射药物 由病毒细胞的生长规律可知,第n(h)时病毒细胞的数量是2n-1m个.因此为了使小白鼠在试验过程中不死亡,应有2n-1mm106,即2n-1106,(n-1)lg26,n1+20.9,第一次最迟应在第20(h)时注射该种药物;(2)第20(h)时的小白鼠体内的病毒细胞数是210m(1-98%)=个.设第一次注射药物后的第t小时必须注射药物,则2tm106,即2t+20108,(t+20)lg28,t-206.57,因此第二次注射药物的时间最迟应在自开始注射该种药物后的第6(h),才能维持白鼠

16、的生命. 规律总结 解决实际应用问题的一般步骤:(1)读题:反复读题,领悟题目的数学本质,弄清题中出现的每个量及其数学含义;(2)建模:恰当地设出关键量,根据题意进行数学化设计,建立目标函数(函数模型);(3)求解:用相关的函数知识进行数学上的计算;(4)反馈:把计算获得的结果返回到实际问题中,写出答案.20(1)f (x)=x+1的反函数是f -1(x)=x-1, 点(n+1,)(nN*)在反函数图象上,=n,而a1=1,=123(n-1),an=(n-1)!;(2)Sn= 又Sn随n的增大而增大,SnS1=,由Snm得,m,即常数m的取值范围是思路点拨 本题考查了数列的通项公式的求法. 当

17、已知数列an的递推公式是= f (n)的形式时,通常采用累乘的方法求解.21(1)2an+1=3an-an-1(n2),得2(an+1-an)=an-an-1(n2), (n2),因此数列an-an-1是以a2-a1=1,为首项,为公比的等比数列, an-an-1=, 当n2时,an=(an-an-1)+(an-1-an-2)+(a2-a1)+a1 ,又a1=2=4-, 因此an=4-. (2)由不等式,得, 即,所以2(4-m)2n0,因此cn=2. (2)(理)由已知得QnPn+1Qn+1是等边三角形,所以当n2时,an-cn-1=(cn-cn-1),an=(cn+cn-1)=+.又a1=

18、1=+,所以数列an的通项公式是an=+,= (文)由已知得QnPn+1Qn+1是等边三角形,所以当n2时,an-cn-1=(cn-cn-1),an=(cn+cn-1)=+.又a1=1=+,所以数列an的通项公式是an=+.(3)(理)由(2)得an=+,anan+1=(+)(+)=n,当n2时,有,即,+=3-2+1-=4-2-4-2,当n=1时,综上所述,(其中nN*).(文)由(1)得,且当n2时,=22,当n=1时, 综上所述,(其中nN*).规律总结 有关数列背景下的不等式的证明问题,在处理过程中常常会涉及放缩法的使用,这就要求考生对于放缩法的使用技巧有一定的积累,否则难以完成. 常见的数列问题中的放缩方式有:(1)(n2);(2);(3)2(-)=2(-);(4)当1kn时,k(k-1)n(k-1),即k(n-k+1)n;(5)

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 小学资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁