《复旦大学遗传学.doc》由会员分享,可在线阅读,更多相关《复旦大学遗传学.doc(34页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、【精品文档】如有侵权,请联系网站删除,仅供学习与交流复旦大学遗传学.精品文档.复旦大学遗传学讲稿(一)沧海月明 发表于 2006-2-24 22:02:00第一章 绪 论 关键词:遗传学 Genetics遗 传 heredity变 异 variation 一遗传学的研究特点1. 在生物的个体,细胞,和基因层次上研究遗传信息的 结构,传递和表达。2. 遗传信息的传递包括世代的传递和个体间的传递。3. 通过个体杂交和人工的方式研究基因的功能。“遗传学”定义 遗传学是研究生物的遗传与变异规律的一门生物学分支科学。 遗传学是研究基因结构,信息传递,表达和调控的一门生物学分支科学遗 传 heredity
2、生物性状或信息世代传递的现象。同一物种只能繁育出同种的生物同一家族的生物在性状上有类同现象 变异variation生物性状在世代传递过程中出现的差异现象。生物的子代与亲代存在差别。生物的子代之间存在差别。遗传与变异的关系 遗传与变异是生物生存与进化的基本因素。遗传维持了生命的延续。没有遗传就没有生命的存在,没有遗传就没有相对稳定的物种。 变异使得生物物种推陈出新,层出不穷。没有变异,就没有物种的形成,没有变异,就没有物种的进化,遗传与变异相辅相成,共同作用,使得生物生生不息,造就了形形色色的生物界。二. 遗传学的发展历史1865年Mendel发现遗传学基本定律。建立了颗粒式遗传的机制。1910
3、年Morgan建立基因在染色体上的关系。1944年Avery证明DNA是遗传物质。1951年Watson和Crick的DNA构型。1961年Crick遗传密码的发现。1975年以后的基因工程的发展。 三. 遗传学的研究分支1. 从遗传学研究的内容划分进化遗传学 研究生物进化过程中遗传学机制与作用的遗传学分支科学 生物进化的机制 突变和选择有害突变 淘汰和保留 有利突变 保留与丢失中立突变 DNA多态性发育遗传学 研究基因的时间,空间,剂量的表达在生物发育中的作用分支遗传学。特征:基因的对细胞周期分裂和分化的作用。 应用重点 干细胞的基因作用。 转基因动物 克隆动物免疫遗传学 研究基因在免疫系统
4、中的作用的遗传学分支。重点 不是研究免疫应答的过程, 而是研究基因在抗体和抗 原形成和改变中的作用。 2. 从遗传学研究的层次划分群体遗传学 研究基因频率的改变的遗传学分支。 群体遗传学 基因结构和基因率的改变 例题 群体中存在一个隐性有害基因,基因频率是万分之一。如果实行优生政策,不准该个体结婚或生育。基因率降低到十万分之一时,需要多少代?细胞遗传学 研究生物在细胞水平的遗传结构和功能的遗传学分支学科。重点:染色体结构合数目的变化与生物表型的关系。进展:细胞表面抗原的形成和改变,细胞信号传导过程中基因的作用。目前的实验:细胞表达系统。例如:无籽西瓜的染色体组成. 普通西瓜 2n22 诱变成功
5、的4倍体作母本 X 2倍体父本杂交,获得3倍体西瓜,在形成生殖细胞时,不能正常减数分裂,所以成为无籽西瓜。分子遗传学 研究生物基因组结构和功能的遗传学分支学科。 基因工程 生物制药分子生物学技术 3. 从遗传学研究的对象划分 微生物遗传学 以微生物为研究对象的遗传学分支。重点 研究病毒,细菌,真菌的基因结构,基因功能。基因工程的载体,受体等人类遗传学 研究人类遗传和变异规律的分支科学。 人类性状的遗传分析 遗传病的分布和发生机理 遗传病的诊断基因治疗 遗传学疾病人类3千多种,涉及上万个基因。 染色体疾病 基因突变疾病,线粒体疾病,孟德尔遗传病,多基因遗传病.1930年色盲基因第一个定位,197
6、4年kappa轻链缺乏症基因第一个克隆。目前已定位孟德尔遗传病基因1600多,克隆了其中的940多种肿瘤抑制基因(antioncogene)Rb del 13q14 27个exon, 12 个intron 视网膜母细胞瘤克隆的概念与类型 四克隆 1Clone源于希腊文klon,嫩枝的意思,是指从树上取下嫩枝,栽在地上以成另一棵树。是细胞、植物、动物或人的精确的遗传复制。 名词,一群具有相同基因型的微生物。 2哺乳动物细胞克隆技术,又称哺乳动物的核移植或无性繁殖技术;它是通过特殊的人工手段(显微操作,电融合等)对哺乳动物特定发育阶段的核供体(胚胎分裂球或体细胞核),及相应的核受体(去核的受精卵或
7、成熟的卵母细胞)不经过有性繁殖过程,进行体外重构并通过重构胚的胚胎移植,从而达到扩繁同基因型哺乳动物种群的目的。3克隆技术存在的问题动物克隆技术虽然取得了一定的进展,但该技术目前还很不完善。存活率低是当今核移植技术的最大缺陷。克隆羊的端粒较同年羊短。可能会减少寿命。基因组印记现象在哺乳动物的发育中普遍存在,基因组印记与动物克隆技术的成功及不足有何关系值得深入研究。核移植过程中产生的个体突变频率高。第二章 基因的概念和结构第一节 孟德尔遗传分析关键词:显性 dominant 隐性 recessive 基因型 genotype 表型 phenotype 分离定律 law of segragatio
8、n自由组合定律 law of independent assortment复等位基因(multiple gene)顺反子(cistron)超基因(super gene)假基因 (pseudo gene)可动基因( mobile gene)染色体外基因复等位基因(multiple gene)连锁 (linkage)交换 (crossing over)重组 (recombination)插入序列 inserted sequence,IS转座子 transposon,Tn一.分离定律实验: P : 红花 X 白花 基因型 CC cc 配 子 C c F1代 红花 基因型 Cc 配子 C,c F2代
9、红花 白花 基因型 CC,Cc cc 比例 3 : 1分离定律 杂合体的一对等位基因在形成配子时互相不影响地分到雌雄配子中去的规律。基础概念杂合体(heterozygote):基因座上两个不同的等位基因的个体。纯合体(homozygote) :基因座上两个相同的等位基因的个体。回交(back cross) :杂交的子一代与亲代的交配形式。测交(test cross) :杂合个体与纯合隐性个体的交配形式。性状(character):生物的形态,结构,生理功能过程的特征。显性(dominant) :杂合子生物表现出来的性状隐性(recessive) : 杂合子生物被掩盖的性状。等位基因(allil
10、e):同源染色体上相对位置上的决定同种性状的基因。表型(phenotype) :生物个体形成的性状表现。基因型(genotype) :生物个体的基因组成孟德尔假设1.遗传性状由遗传因子决定。2.遗传因子是成对存在得。3.生殖细胞中具有成对因子中的一个。4.每对因子分别来自雌雄亲代的生殖细胞。5.形成生殖细胞时,成对因子相互分离。6.生殖细胞的结合是随机的。7.遗传因子有显隐性之分。孟德尔分离比实现的条件1.杂合体的两种配子在形成配子时数目是相等的。2. 两种配子结合是随机的。3.子二代基因型个体存活率是相等的。4.显性是完全的。二.孟德尔自由组合定律实验: 黄,满 X 绿,皱基因型 YYRR
11、yyrr 配子 YR yr F1代 黄满 基因型 YyRr 配子 YR Yr yR yr F2代 黄满 黄皱 绿满 绿皱 基因型 Y_R_ Y_rr yyR_ yyrr 表型比: 9 : 3 : 3 : 1 孟德尔自由组合定律两对非同源色体上的非等位基因在形成配子时,各自独立地分开和组合,形成四种基因型的配子。在杂交时四种配子随机结合,形成四种表型,9种基因型的群体。多对非等位基因分析 例题:AABBCC X aabbcc 子一代自交,子二代中,表型为A-B-C-的比例是多少?1.子一代自交,子二代中,基因型为AaBbCc的比例是多少?2.子一代自交,子二代中,杂合体的比例是多少? 一个基因决
12、定了一个性状。一个性状并不一定由一个基因所决定。事实上,很多性状由一系列基因所决定。当考察性状的遗传方式时,是以在其它基因相同的条件下,仅仅列出了差别的基因。 例题一对表型正常的夫妇生有一个有病的孩子和一个表型正常的孩子。1.再生一个是有病孩子的机会是多少。2.如果表型正常儿子与一个另一个同样类型的表型正常女子结婚,生有病子女的机会是多少。如果一个表型正常,等位基因是杂合的男子与一个纯合隐性基因的病女子结婚,生有5个孩子,其中无病子女的机会是多少,3病2正常的机会是多少。孟德尔分离定律的普遍性适用于单基因遗传性状的分析例如:人类的白化病; RFLP (DNA限制性内切酶片段长度多态性。)Eco
13、R V 酶切 人体基因组DNA,与苯丙氨酸羟化酶基因探针杂交,获得3Okb和25kb的两种类型,父母是正常表型,两个孩子一个是表型正常30kb/25kb杂合体一个是有病个体,25kb/25kb纯合体,推测,25kb可能与有病基因连锁。孟德尔定律数据的统计处理适合度测验(goodness of fit) 实验实际比数与理论比数适合的程度。卡平方测验适合度孟德尔定律的适用范围并显性:当一对等位基因杂合时,两个基因所控制的性状同时表达的现象。外显率带有显性基因个体表现出所控制的性状的实际数与理论数之比。 第二节连锁遗传分析 F1杂合子形成配子时,两对基因有保持亲代原来组合的倾向,并且这种倾向与显隐性
14、无关。摩尔根的试验 摩尔根根据大量实验结果, 提出连锁交换定律,即遗传的第三定律: 处在同一染色体上的两个或两个以上基因遗传时,联合在一起的频率大于重新组合的频率 连锁 (linkage): 同一亲本的基因趋向于联合 交换 (crossing over): 同一亲本的基因相互分开,重新组合 重组 (recombination):由于同源染色体上的不同等位基因间的重新组合,产生不同于亲本的类型重组频率 recombination frequency, RF 重组频率的计算:重组频率(RF):重组型数目/(亲本型数目重组型数目)1%重组值为一个单位,称一个厘摩,记作1个CM。基因在染色体上的距离以
15、重组值为根据,画出的基因距离图称遗传学图(genetic map)。三点测交(three point tess cross)关于连锁和交换的几个实例用RFLP做Arabidopsis遗传图:l 两个亲本分别用不同限制性内切酶做酶切,并分别用探针A(蓝色)和探针B(绿色)做Southern杂交。 若两种RFLP自由分离,F2代中亲本型和重组型出现频率相同(Case I);否则,若二者紧密连锁,重组型出现频率将大大小于亲本型出现频率(Case II) 根据重组频率可以计算遗传标记RFLP间的图距。.应用连锁遗传分析做疾病l 的产前基因诊断 地中海贫血是一种常见的遗传疾病,重症型往往造成死亡。可通过
16、产前诊断预防患儿的出生。利用几种限制酶对几个地中海贫血家系的患者及其父母进行RFLP分析。根据所得结果,可选用特定的探针和限制性内切酶对胎儿做产前基因分析。家系分析 用限制性内切酶AvaII和探针IVS以及限制性内切酶HindIII和探针pRK28进行分析 第三节 血型遗传学复等位基因:一个群体中,存在着2个以上的等位基因。 ABO血型系统遗传方式 A 血型: IA I A ; IAi B 血型: I BIB ; IBi AB 血型: IAIBO 血型: ii例题 一对分别都是AB 血型的夫妻,所生的子女 A 型, AB 型 B 型 某一 人群B 血型占0.45 ,O 血型占0.36 ,计算该
17、群体中A 和AB 血型的比例。 孟买血型和类孟买血型特例: 临床中发现有一位病人在验血中确定为B 血型,在接受O 型血的输血后,引起凝血反应。 在对供血者血液重新检测时发现,其血细胞在与抗A 血清反应时,初时无反应,2 个小时后呈凝集反应。所以确定供血者为A 型,而不是O 型。 有一犯罪嫌疑人在犯罪现场留下的唾液鉴定血型是O 型,但是在重点检查某一嫌疑人时,检测出该人的血型是B 型,在其它举证都确凿的情况下,已经确认该人是犯罪人,为什么会出现体液与血液血型不一致的现象? 有一AB 血型男子与O 血型女子结婚,生了一个O 型孩子,分析其原因。 CIS AB 。 9q34 同源染色体不等交换。 二
18、 Rh血型系统遗传分析恒河猴红细胞(Rhesus monkeys抗原) 免疫家兔兔抗猴血清 检测人红细胞。85 产生凝集反应15 无凝集反应定名恒河猴红细胞抗原为Rh抗原。 Rh阳性血型的红细胞带有Rh抗原,无抗体。 Rh阴性血型的红细胞没有Rh抗原,有抗体Rh血型新生儿溶血症 Rh阴性血型的母亲怀有Rh阳性血型的胎儿,在母亲胎盘异常情况下,临产时会出现母亲的抗体进入新生儿血液中,与婴儿的抗原产生免疫反应,造成婴儿溶血。Rh血型的遗传机制 Rh抗原受控与3个紧密连锁的基因座: Cc ; Dd; Ee。以单倍型方式传递。 当D基因存在时,为Rh阳性。d基因没有相应的抗原,是Rh阴性血型。单倍型:
19、一条染色体上的基因组成。 CDE;CDe;CdE;Cde; cDE;cDe; cdE; cde; 三人类白细胞抗原(hunman lecucocy antigen,HLA)抗宿主反应:受体抗原供体抗体排斥反应: 受体抗体供体抗原主要组织相容性抗原系统(major histocompatibility antigen system)主要组织相容性复合体基因(major histocompatibility complex gene , MHC)HLA的遗传机制主要组织相容性抗原按免疫性分为三类:第一类:移植抗原(transplantation antigen), 位于T淋巴细胞上, 编码基因为:
20、HLAA,B,第二类:免疫反应的信息传递抗原。 编码基因为:HLADR,DQ,DP第三类: 补体蛋白,与抗原抗体复合物作用。 编码基因为:HLAC2,C4,Bf同一条染色体上的基因组成被称为单倍型(haplotype)白细胞抗原的单倍型分析父抗原: A2 , A 11 , B13 , Bw46母抗原: A3 , A 9 , B5 , B7子1抗原: A2 A3 B7 Bw46子2抗原: A11 A9 B5 B13子3抗原: A2 A9 B5 Bw46子4抗原: A3 A11 B7 B13子5抗原: A3 A11 B7 Bw46四MN血型的遗传分析 人群中存在着MN血型系统,受M和N两个基因控制
21、,并显性。 M NM MM MNN MN NNMN血型的遗传分析MNSs是紧密连锁的血型基因单倍型是: MS ; NS; Ms;Ns基因型有10种:MS ; NS; Ms;NsMS S; Ms sS NS; s NsMS NS; sM; Ms Ns; 例题:用M和N血清检查一个家庭,确定父亲基因型是NN,母亲是MM,儿子是MM。 结论:儿子不是该夫妻的亲生孩子。 但是其它血型和方法证明孩子的确是亲生的。 发现了Mg抗原亚型。 M g抗体不能与M抗原反应。 检测结果,父亲表型是具有Mg和N抗原,基因型是MgN。五伴性血型遗传Xg血型的遗传分析Xg抗原是目前发现的第一个与性别有关的抗原 基因:Xg
22、a 有Xg抗原 Xg 无Xg抗原 Xga对 Xg显性 第四节基因组中的转座成分一转座因子玉米粒颜色的遗传。 有色正常: 有色 无色,色斑异常: 有色 玉米的转座子玉米色粒调控元件Ac-Ds 系统 第9 染色体 C 基因, 色素合成基因。 Ac 基因,自主移动的调节因子。4.5 kb, 5 个exon, 编码转座酶。 Ds 基因, 非自主移动的受体因子。 0.5-4.0 kb, 与Ac 有同源序列。 插入引起色素不能合成。插入序列(insertion sequence, IS) 仅含有转座酶基因的简单转移序列。长度多在7001500bp左右。 由末端反向重复序列(IR),转座酶基因组成。 插入基
23、因组中时,在靶位上生成正向重复序列(DR)常见的IS结构 IS 长度 末端IR 靶位DR 插入选择IS1 768 23 9 随机IS2 1327 41 95 热点IS4 1428 18 11(12) AAAN20TTTIS5 1195 16 4 热点IS10 1329 22 9 TNAGCN IS50 1531 9 9 热点转座子(transposon, Tn)带有转座酶基因等必需基因及抗药性等与转座无关基因的转座因子。结构特征: 两端具有同向或反向插入序列,同时,两端的IS可能相同或不同。常见的转座子:转座子 长度 标记 末端 取向 Tn 5 5700 KanR IS50 反向Tn10 93
24、00 TetR IS10 反向Tn 9 2500 CamR IS 1 正向反转录转座子(retrotransposon)通过RNA为中介,反转录成DNA后进行转座的可动元件。病毒超家族(viral super family),可编码反转录酶或整和酶,自主转录。呈DNA时,具有LTR序列。非病毒超家族(nonviral super family),不可编码反转录酶或整和酶,不能自主转录。呈DNA时,无LTR序列。 果蝇的转座子P (P Element) 开放阅读框 ORF 0ORF1ORF2ORF3内含子 1 2 3P因子表达差异:66 KD , 转座阻遏物 ORF 0,1,2 87KD , 转
25、座酶 ORF 0 ,1 ,2 ,3 P 型细胞质:含66 KD , 阻遏转座 酵母的转座子Ty (Transposon yeast)转座引起的遗传效应插入突变插入失活插入带来新的基因非精确解离形成突变(缺失,重复,到位)插入激活第五节 其它基因结构一 顺反子(cistron)早期的基因概念:基因是一个功能单位,重组单位,突变单位。发展的基因概念:基因是一个功能单位,基因内部可突变和重组。一个基因就是一个顺反子。基因的顺式和反式排列 X 174 基因转录起始点不同,但是共用同一段DNA 序列或几个核苷酸的不同基因。F1977年 Sanger 二染色体外基因线粒体基因组线粒体是真核细胞中的细胞器。
26、每个细胞中含有几十至数千个线粒体。每个线粒体有多个线粒体基因组拷贝。线粒体是非孟德尔式遗传方式,在高等生物中具有母性遗传的特征。mt DNA的遗传特征母性遗传:mtDNA全部来自母亲,线粒体随机分配到子细胞。mtDNA无内含子,无修复系统。mtDNA复制,转录,翻译所需的酶由核基因组提供。mtDNA一般没有蛋白质保护。mtDNA合成存在与细胞整个周期。具有突变和缺失热点。mtDNA致病的遗传机制线粒体基因组本身突变线粒体基因组突变可以引起视觉神经和心肌性疾病。 点突变:由于mtDNA裸露,易受损伤,且无修复机制。所以突变频率较高。11778密码突变,arg-his 视觉神经性疾病。 缺失:常见
27、5kb, 8470bp-13447bp 7.4kb, 8637bp-16073bpmtDNA插入核基因组溶酶体途径:核酸水解酶下降,mtDNA不能完全消化,片段游离在细胞质中。直接游离:mtDNA复制中同源重组,产生mtDNA断片。线粒体崩解:由于理,化,病等因素,线粒体肿胀破裂,释放出mtDNA.以上DNA片段插入核基因组,造成突变。基因的相互作用互补基因(conplementary genes)修饰基因修饰基因(modifiers)上位效应(epistasis)第三章 肿瘤的遗传学 关键词细胞周期癌基因(oncogene) 病毒癌基因 V-oncogene 细胞癌基因 C-oncogene
28、抑癌基因(antioncogene,tumor suppressor gene)肿瘤转移抑制基因(metastasis suppressor gene)一.肿瘤的生物学特征与流行病学肿瘤是基因的疾病,凡是肿瘤,都与基因组的变异有关。但是,与基因组有关的疾病并不一定都是遗传的。肿瘤有遗传性的,也有非遗传性的(散发性的)。单克隆起源(monoclonal theory)一个肿瘤的细胞群体源于一个转化单细胞的不断增殖而成。 对细胞群的遗传标记分析,具有高度一致性。例如: 多灶性细支气管肺泡癌(BAC),原发灶,卫星灶,转移灶中的不同区域的癌细胞k-ras具有相同的突变。 肿瘤家族集聚癌家族:具有较多
29、成员发生肿瘤的家族。 G家族 1895年1976年842名成员中95名患癌。 特征: 发病率高;发病高峰4050岁;男女比例相等;男多是胃癌,肠腺癌;女多是子宫癌。 垂直传递,72患者双亲之一患癌。 符合常染色体显性遗传方式。家族性癌:在一个家族内多个成员出现的同一种癌。例如:结肠癌,1215有家族史。特征:患者一级亲属发病风险比一般高3倍。若发病年龄早和双侧性肿瘤,发病风险高30倍。常见的遗传性肿瘤肿瘤易感基因 在相同环境下发生肿瘤可能性比一般基因组具有更多机会的基因。 肺癌易感基因CYP 1A1酶在肺中表达,参与烟草中多环芳烃类物质代谢。该基因具有Msp I 多态, m2m2 基因型具有肺
30、癌易感性。染色体畸变的原因二.肿瘤的遗传机制癌基因的异常表达 癌基因突变 癌基因低甲基化 癌基因扩增 染色体易位(基因重排,融合基因)抑癌基因失活癌基因 能在体外引起细胞转化,在体内诱发肿瘤的基因。细胞内的原癌基因高度保留,从酵母到人都存在,这些基因与细胞生长,增殖,分化有关,并受到精细和严格的控制。原癌基因具有的生物学功能: 生长因子;生长因子受体;参与信号传导的蛋白激酶;核内蛋白等。细胞周期 抑癌基因高甲基化调节基因 细胞G1期 S期癌基因发现1911年 Rous发现鸡肉瘤病毒(RSV)能使鸡胚成纤维细胞转化,也能使鸡诱发肿瘤。1976年从RVS病毒中发现了src癌基因。 克隆了该基因,是
31、第一个Vonc1982年从人膀胱癌细胞中分离出了细胞癌基因ras基因。是第一个 C-onc细胞癌基因(c-onc)1976年,Bishop从Rous病毒中分离出癌基因src,并在动物正常细胞中发现有同源序列。以后在许多病毒癌基因都在细胞中都发现了它的同源序列,这些序列被称为细胞癌基因。病毒癌基因源于细胞癌基因。癌基因致癌机制癌基因突变 原癌基因ras 编码189个氨基酸的蛋白是一个细胞信号传导中起着开关作用的蛋白,当ras gene 突变时,ras 蛋白一直处于开的状态,细胞生长。ras proto-oncogene1 12 61 189 gly gln C), k-ras oncogene
32、arg ( G ras 附近插入了启动子,启动癌基因表达。ras的CCGG甲基化程度降低,癌基因异常高表达。DNA的CpG岛的甲基化,干扰了转录因子与启动子识别位点的结合,降低了基因的表达。癌基因去甲基化,引起高表达致癌。抑癌基因高甲甲基化,引起低表达致癌。肿瘤抑制基因(tumor suppressor gene)一类与细胞周期调控有关的基因,当这些基因正常表达时,具有抑制细胞分裂的功能。这些基因的失活或缺失,会导致细胞非正常的分裂,正常细胞有可能转化为肿瘤细胞。 首先发现的肿瘤抑制基因 视网膜母细胞瘤 发现Rb基因缺失呈杂合体时,细胞是正常的,缺失纯合体时细胞转化。显示该基因是纯合隐性致癌。
33、Rb纯合缺失后致癌表明Rb基因存在时对肿瘤细胞有抑制作用,因此Rb是肿瘤抑制基因。del(13) (q14)肿瘤抑制基因(tumor suppressor gene)抑癌基因 (anti-oncogene) 以参与细胞周期调控的形式,对正常细胞的增殖起负调控作用,抑制细胞的恶性转化。 癌基因与抑癌基因比较特点 oncogene anti-oncogene基因属性 cell增殖基因 组织分化基因致癌方式 激活,异常表达 基因丢失或失活诱发机理 突变或易位 突变或缺失致癌机理 显性 隐性 三.肿瘤细胞转移 肿瘤细胞从原发肿瘤脱落,进入细胞外基质与脉管内,输送至远端适宜的组织中克隆生长。浸润转移是恶
34、性肿瘤的重要特征,也是肿瘤病人死亡的主要原因。用myc等癌基因染小鼠,可以使小鼠产生癌细胞,但是不转移。说明转化与转移不是同一类基因。肿瘤浸润机制整合素基因(integrins gene)-细胞表面粘合受体-细胞基质粘附蛋白-锚定细胞。肿瘤细胞表达金属蛋白酶-降解粘附蛋白,使得细胞失去固着作用。正常细胞含有金属蛋白酶抑制因子基因(TIMP gene ),表达的蛋白能与蛋白酶结合,抑制它的水解功能,从而锚定细胞。肿瘤细胞该基因表达受阻。Metastatic gene and metastatic suppressor gene 转移和抑制转移基因浸润转移:肿瘤细胞从原发肿瘤中脱落,进入细胞外基质
35、和血管或淋巴管中,迁移到远处其它组织生长的现象。肿瘤转移抑制基因实验:小鼠黑色素瘤k-1735细胞系中发现,去转染正常小鼠,有高转移和低转移之分。消减杂交法寻找转移相关基因nm23nm23高表达,肿瘤低转移,反之,高转移。应用:可作转移预测;肿瘤转移抑制。肿瘤基因诊断与治疗Mic mRNAgene knockout oncogene转基因(antioncogene)免疫法(淋巴因子基因转入)自杀基因自杀基因(suicide gene) 能够编码产生将非活性或无毒性前体药物转化成活性活毒性药物的酶的基因。HSK-tk/GCV(胸腺激酶丙氧鸟苷)系统:细胞中存在着胸腺激酶(HSV-tk), GCV
36、是临床上治疗疱疹病毒的药物。将HSK-tk基因转入癌细胞后给GCV药,使得GCV在胸腺激酶作用下生成三磷酸GCV,能阻断细胞DNA合成产生细胞毒作用。第四章 基因和染色体关键词:重复duplication缺失deletion倒位inversion易位translocation一.染色体结构的畸变染色体基因组结构大片段的改变。重复:染色体区段增加。缺失:染色体片段丢失。倒位:染色体位置颠倒。易位:非同源染色体片段位置互换。重复 duplication重复的细胞学和遗传学效应细胞学效应:减数分裂时,同源染色体配对出现弧状结构。弧状结构是重复的部分。遗传学效应:出现突变,严重时死亡。基因剂量不平衡造
37、成发育异常.动态突变(dynamic mutation)DNA序列中由于寡核苷酸拷贝数目的变化,引起生物表型改变的突变,称为动态突变。动态突变通常是由三联体密码子重复数目的增加而形成的。X脆性染色体综合症是由于在X染色体P27.3位置上CGG拷贝数目增加到200以上,引起基因的改变,形成痕迹很重的染色体,突变的部分很容易被打断,所以被称为是脆性染色体。脆性位点是染色体上在特殊条件下易断裂的位点,可能为收缩或缝隙。在人类染色体上已发现一系列的脆性位点。其中研究最详尽的位于X 染色体上,目前发现其与智障有关。脆性X综合症为X连锁遗传,出现几率在男婴中为1/2500,主要成因可能是因为CGG三核苷片
38、段重复数目的变化。 缺失 deletion 缺失是指染色体部分片段的丢失。 缺失往往不会发生回复突变,从而使得未发生缺失的染色体上的隐性等位基因得以表现,也可能造成表达产物不平衡。缺失的细胞学和遗传学效应细胞学效应:减数分裂时,同源染色体配对出现弧状结构。弧状结构是正常的染色体部分。遗传学效应:出现突变,严重时死亡。有时会出现拟显性现象。倒位: 是指染色体一个片段发生颠倒。倒位往往形成无效 的配子,从而使算出的重组频率偏低。倒位的细胞学效应和遗传学效应细胞学效应:倒位杂合体在减数分裂同源染色体配对时,形成倒位环。遗传学效应:倒位区内重组,形成不可育配子。被称为“抑制重组。”平衡致死系紧密连锁或中间具有到位片段的相邻基因由于生殖细胞的同源染色体不能交换,所以可以非等位基因的双杂合子,保存非等位基因的纯合隐性致死基因,该品系被称为平衡致死系。l易位l translocation 易位是指染色体片段的转移,既可发生在非同源染色体间,亦可发生在同一条染色体的不同位置。易位往往造成基因移位或断裂,影响基因功能。易位的细胞学效应和遗传学效应细胞学效应:易位杂合体在减数分裂同源染色体配对时,形成十字型结构。遗传学效应:形成不可育和可育配子,各占1/2。被称为“半不育。”二染色体数目的改变整倍数