场效应管工作原理.doc

上传人:豆**** 文档编号:17527622 上传时间:2022-05-24 格式:DOC 页数:7 大小:311.50KB
返回 下载 相关 举报
场效应管工作原理.doc_第1页
第1页 / 共7页
场效应管工作原理.doc_第2页
第2页 / 共7页
点击查看更多>>
资源描述

《场效应管工作原理.doc》由会员分享,可在线阅读,更多相关《场效应管工作原理.doc(7页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、【精品文档】如有侵权,请联系网站删除,仅供学习与交流场效应管工作原理.精品文档.场效应管工作原理是什么?场效应晶体管(Field Effect Transistor缩写(FET))简称场效应管。一般的晶体管是由两种极性的载流子,即多数载流子和反极性的少数载流子参与导电,因此称为双极型晶体管,而FET仅是由多数载流子参与导电,它与双极型相反,也称为单极型晶体管。它属于电压控制型半导体器件,具有输入电阻高(108109)、噪声小、功耗低、动态范围大、易于集成、没有二次击穿现象、安全工作区域宽等优点,现已成为双极型晶体管和功率晶体管的强大竞争者。一、场效应管的分类场效应管分结型、绝缘栅型两大类。结型

2、场效应管(JFET)因有两个PN结而得名,绝缘栅型场效应管(JGFET)则因栅极与其它电极完全绝缘而得名。目前在绝缘栅型场效应管中,应用最为广泛的是MOS场效应管,简称MOS管(即金属-氧化物-半导体场效应管MOSFET);此外还有PMOS、NMOS和VMOS功率场效应管,以及最近刚问世的MOS场效应管、VMOS功率模块等。按沟道半导体材料的不同,结型和绝缘栅型各分沟道和P沟道两种。若按导电方式来划分,场效应管又可分成耗尽型与增强型。结型场效应管均为耗尽型,绝缘栅型场效应管既有耗尽型的,也有增强型的。场效应晶体管可分为结场效应晶体管和MOS场效应晶体管。而MOS场效应晶体管又分为N沟耗尽型和增

3、强型;P沟耗尽型和增强型四大类。见下图。二、场效应三极管的型号命名方法现行有两种命名方法。第一种命名方法与双极型三极管相同,第三位字母J代表结型场效应管,O代表绝缘栅场效应管。第二位字母代表 材料,D是P型硅,反型层是N沟道;C是N型硅P沟道。例如,3DJ6D是结型N沟道场效应三极管,3DO6C 是绝缘栅型N沟道场效应三极管。第二种命名方法是CS#,CS代表场效应管,以数字代表型号的序号,#用字母代表同一型号中的不同规格。例如CS14A、CS45G等。 三、场效应管的参数场效应管的参数很多,包括直流参数、交流参数和极限参数,但一般使用时关注以下主要参数:1、I DSS 饱和漏源电流。是指结型或

4、耗尽型绝缘栅场效应管中,栅极电压U GS=0时的漏源电流。2、UP 夹断电压。是指结型或耗尽型绝缘栅场效应管中,使漏源间刚截止时的栅极电压。3、UT 开启电压。是指增强型绝缘栅场效管中,使漏源间刚导通时的栅极电压。4、gM 跨导。是表示栅源电压U GS 对漏极电流I D的控制能力,即漏极电流I D变化量与栅源电压UGS变化量的比值。gM 是衡量场效应管放大能力的重要参数。5、BUDS 漏源击穿电压。是指栅源电压UGS一定时,场效应管正常工作所能承受的最大漏源电压。这是一项极限参数,加在场效应管上的工作电压必须小于BUDS。6、PDSM 最大耗散功率。也是一项极限参数,是指场效应管性能不变坏时所

5、允许的最大漏源耗散功率。使用时,场效应管实际功耗应小于PDSM并留有一定余量。7、IDSM 最大漏源电流。是一项极限参数,是指场效应管正常工作时,漏源间所允许通过的最大电流。场效应管的工作电流不应超过IDSM 几种常用的场效应三极管的主要参数 四、场效应管的作用1、场效应管可应用于放大。由于场效应管放大器的输入阻抗很高,因此耦合电容可以容量较小,不必使用电解电容器。2、场效应管很高的输入阻抗非常适合作阻抗变换。常用于多级放大器的输入级作阻抗变换。3、场效应管可以用作可变电阻。4、场效应管可以方便地用作恒流源。5、场效应管可以用作电子开关。 五、场效应管的测试1、结型场效应管的管脚识别:场效应管

6、的栅极相当于晶体管的基极,源极和漏极分别对应于晶体管的发射极和集电极。将万用表置于R1k档,用两表笔分别测量每两个管脚间的正、反向电阻。当某两个管脚间的正、反向电阻相等,均为数K时,则这两个管脚为漏极D和源极S(可互换),余下的一个管脚即为栅极G。对于有4个管脚的结型场效应管,另外一极是屏蔽极(使用中接地)。2、判定栅极用万用表黑表笔碰触管子的一个电极,红表笔分别碰触另外两个电极。若两次测出的阻值都很小,说明均是正向电阻,该管属于N沟道场效应管,黑表笔接的也是栅极。制造工艺决定了场效应管的源极和漏极是对称的,可以互换使用,并不影响电路的正常工作,所以不必加以区分。源极与漏极间的电阻约为几千欧。

7、注意不能用此法判定绝缘栅型场效应管的栅极。因为这种管子的输入电阻极高,栅源间的极间电容又很小,测量时只要有少量的电荷,就可在极间电容上形成很高的电压,容易将管子损坏。3、估测场效应管的放大能力将万用表拨到R100档,红表笔接源极S,黑表笔接漏极D,相当于给场效应管加上1.5V的电源电压。这时表针指示出的是D-S极间电阻值。然后用手指捏栅极G,将人体的感应电压作为输入信号加到栅极上。由于管子的放大作用,UDS和ID都将发生变化,也相当于D-S极间电阻发生变化,可观察到表针有较大幅度的摆动。如果手捏栅极时表针摆动很小,说明管子的放大能力较弱;若表针不动,说明管子已经损坏。由于人体感应的50Hz交流

8、电压较高,而不同的场效应管用电阻档测量时的工作点可能不同,因此用手捏栅极时表针可能向右摆动,也可能向左摆动。少数的管子RDS减小,使表针向右摆动,多数管子的RDS增大,表针向左摆动。无论表针的摆动方向如何,只要能有明显地摆动,就说明管子具有放大能力。本方法也适用于测MOS管。为了保护MOS场效应管,必须用手握住螺钉旋具绝缘柄,用金属杆去碰栅极,以防止人体感应电荷直接加到栅极上,将管子损坏。MOS管每次测量完毕,G-S结电容上会充有少量电荷,建立起电压UGS,再接着测时表针可能不动,此时将G-S极间短路一下即可。 目前常用的结型场效应管和MOS型绝缘栅场效应管的管脚顺序如下图所示。六、常用场效用

9、管1、MOS场效应管 即金属-氧化物-半导体型场效应管,英文缩写为MOSFET(Metal-Oxide-Semiconductor Field-Effect-Transistor),属于绝缘栅型。其主要特点是在金属栅极与沟道之间有一层二氧化硅绝缘层,因此具有很高的输入电阻(最高可达1015)。它也分N沟道管和P沟道管,符号如图1所示。通常是将衬底(基板)与源极S接在一起。根据导电方式的不同,MOSFET又分增强型、耗尽型。所谓增强型是指:当VGS=0时管子是呈截止状态,加上正确的VGS后,多数载流子被吸引到栅极,从而“增强”了该区域的载流子,形成导电沟道。耗尽型则是指,当VGS=0时即形成沟道

10、,加上正确的VGS时,能使多数载流子流出沟道,因而“耗尽”了载流子,使管子转向截止。以N沟道为例,它是在P型硅衬底上制成两个高掺杂浓度的源扩散区N+和漏扩散区N+,再分别引出源极S和漏极D。源极与衬底在内部连通,二者总保持等电位。图1(a)符号中的前头方向是从外向电,表示从P型材料(衬底)指身N型沟道。当漏接电源正极,源极接电源负极并使VGS=0时,沟道电流(即漏极电流)ID=0。随着VGS逐渐升高,受栅极正电压的吸引,在两个扩散区之间就感应出带负电的少数载流子,形成从漏极到源极的N型沟道,当VGS大于管子的开启电压VTN(一般约为+2V)时,N沟道管开始导通,形成漏极电流ID。 国产N沟道M

11、OSFET的典型产品有3DO1、3DO2、3DO4(以上均为单栅管),4DO1(双栅管)。它们的管脚排列(底视图)见图2。MOS场效应管比较“娇气”。这是由于它的输入电阻很高,而栅-源极间电容又非常小,极易受外界电磁场或静电的感应而带电,而少量电荷就可在极间电容上形成相当高的电压(U=Q/C),将管子损坏。因此了厂时各管脚都绞合在一起,或装在金属箔内,使G极与S极呈等电位,防止积累静电荷。管子不用时,全部引线也应短接。在测量时应格外小心,并采取相应的防静电感措施。MOS场效应管的检测方法(1)准备工作测量之前,先把人体对地短路后,才能摸触MOSFET的管脚。最好在手腕上接一条导线与大地连通,使

12、人体与大地保持等电位。再把管脚分开,然后拆掉导线。(2)判定电极将万用表拨于R100档,首先确定栅极。若某脚与其它脚的电阻都是无穷大,证明此脚就是栅极G。交换表笔重测量,S-D之间的电阻值应为几百欧至几千欧,其中阻值较小的那一次,黑表笔接的为D极,红表笔接的是S极。日本生产的3SK系列产品,S极与管壳接通,据此很容易确定S极。(3)检查放大能力(跨导)将G极悬空,黑表笔接D极,红表笔接S极,然后用手指触摸G极,表针应有较大的偏转。双栅MOS场效应管有两个栅极G1、G2。为区分之,可用手分别触摸G1、G2极,其中表针向左侧偏转幅度较大的为G2极。目前有的MOSFET管在G-S极间增加了保护二极管

13、,平时就不需要把各管脚短路了。MOS场效应晶体管使用注意事项。MOS场效应晶体管在使用时应注意分类,不能随意互换。MOS场效应晶体管由于输入阻抗高(包括MOS集成电路)极易被静电击穿,使用时应注意以下规则:(1).MOS器件出厂时通常装在黑色的导电泡沫塑料袋中,切勿自行随便拿个塑料袋装。也可用细铜线把各个引脚连接在一起,或用锡纸包装(2).取出的MOS器件不能在塑料板上滑动,应用金属盘来盛放待用器件。(3). 焊接用的电烙铁必须良好接地。(4). 在焊接前应把电路板的电源线与地线短接,再MOS器件焊接完成后在分开。(5). MOS器件各引脚的焊接顺序是漏极、源极、栅极。拆机时顺序相反。(6).

14、电路板在装机之前,要用接地的线夹子去碰一下机器的各接线端子,再把电路板接上去。(7). MOS场效应晶体管的栅极在允许条件下,最好接入保护二极管。在检修电路时应注意查证原有的保护二极管是否损坏。 2、VMOS场效应管VMOS场效应管(VMOSFET)简称VMOS管或功率场效应管,其全称为V型槽MOS场效应管。它是继MOSFET之后新发展起来的高效、功率开关器件。它不仅继承了MOS场效应管输入阻抗高(108W)、驱动电流小(左右0.1A左右),还具有耐压高(最高可耐压1200V)、工作电流大(1.5A100A)、输出功率高(1250W)、跨导的线性好、开关速度快等优良特性。正是由于它将电子管与功

15、率晶体管之优点集于一身,因此在电压放大器(电压放大倍数可达数千倍)、功率放大器、开关电源和逆变器中正获得广泛应用。众所周知,传统的MOS场效应管的栅极、源极和漏极大大致处于同一水平面的芯片上,其工作电流基本上是沿水平方向流动。VMOS管则不同,从左下图上可以看出其两大结构特点:第一,金属栅极采用V型槽结构;第二,具有垂直导电性。由于漏极是从芯片的背面引出,所以ID不是沿芯片水平流动,而是自重掺杂N+区(源极S)出发,经过P沟道流入轻掺杂N-漂移区,最后垂直向下到达漏极D。电流方向如图中箭头所示,因为流通截面积增大,所以能通过大电流。由于在栅极与芯片之间有二氧化硅绝缘层,因此它仍属于绝缘栅型MO

16、S场效应管。 国内生产VMOS场效应管的主要厂家有877厂、天津半导体器件四厂、杭州电子管厂等,典型产品有VN401、VN672、VMPT2等。表1列出六种VMOS管的主要参数。其中,IRFPC50的外型如右上图所示。VMOS场效应管的检测方法(1)判定栅极G将万用表拨至R1k档分别测量三个管脚之间的电阻。若发现某脚与其字两脚的电阻均呈无穷大,并且交换表笔后仍为无穷大,则证明此脚为G极,因为它和另外两个管脚是绝缘的。(2)判定源极S、漏极D 由图1可见,在源-漏之间有一个PN结,因此根据PN结正、反向电阻存在差异,可识别S极与D极。用交换表笔法测两次电阻,其中电阻值较低(一般为几千欧至十几千欧

17、)的一次为正向电阻,此时黑表笔的是S极,红表笔接D极。(3)测量漏-源通态电阻RDS(on) 将G-S极短路,选择万用表的R1档,黑表笔接S极,红表笔接D极,阻值应为几欧至十几欧。由于测试条件不同,测出的RDS(on)值比手册中给出的典型值要高一些。例如用500型万用表R1档实测一只IRFPC50型VMOS管,RDS(on)=3.2W,大于0.58W(典型值)。(4)检查跨导 将万用表置于R1k(或R100)档,红表笔接S极,黑表笔接D极,手持螺丝刀去碰触栅极,表针应有明显偏转,偏转愈大,管子的跨导愈高。注意事项:(1)VMOS管亦分N沟道管与P沟道管,但绝大多数产品属于N沟道管。对于P沟道管

18、,测量时应交换表笔的位置。(2)有少数VMOS管在G-S之间并有保护二极管,本检测方法中的1、2项不再适用。(3)目前市场上还有一种VMOS管功率模块,专供交流电机调速器、逆变器使用。例如美国IR公司生产的IRFT001型模块,内部有N沟道、P沟道管各三只,构成三相桥式结构。(4)现在市售VNF系列(N沟道)产品,是美国Supertex公司生产的超高频功率场效应管,其最高工作频率fp=120MHz,IDSM=1A,PDM=30W,共源小信号低频跨导gm=2000S。适用于高速开关电路和广播、通信设备中。(5)使用VMOS管时必须加合适的散热器后。以VNF306为例,该管子加装1401404(m

19、m)的散热器后,最大功率才能达到30W七、场效应管与晶体管的比较(1)场效应管是电压控制元件,而晶体管是电流控制元件。在只允许从信号源取较少电流的情况下,应选用场效应管;而在信号电压较低,又允许从信号源取较多电流的条件下,应选用晶体管。(2)场效应管是利用多数载流子导电,所以称之为单极型器件,而晶体管是即有多数载流子,也利用少数载流子导电。被称之为双极型器件。(3)有些场效应管的源极和漏极可以互换使用,栅压也可正可负,灵活性比晶体管好。(4)场效应管能在很小电流和很低电压的条件下工作,而且它的制造工艺可以很方便地把很多场效应管集成在一块硅片上,因此场效应管在大规模集成电路中得到了广泛的应用。

20、1.什么叫场效应管?Fffect Transistor的缩写,即为场效应晶体管。一般的晶体管是由两种极性的载流子,即多数载流子和反极性的少数载流子参与导电,因此称为双极型晶体管,而FET仅是由多数载流子参与导电,它与双极型相反,也称为单极型晶体管。FET应用范围很广,但不能说现在普及的双极型晶体管都可以用FET替代。然而,由于FET的特性与双极型晶体管的特性完全不同,能构成技术性能非常好的电路。2. 场效应管的特征:(a) JFET的概念图(b) JFET的符号图1 JFET的概念图、符号图1(b)门极的箭头指向为p指向 n方向,分别表示内向为n沟道JFET,外向为p沟道JFET。 图1(a)

21、表示n沟道JFET的特性例。以此图为基础看看JFET的电气特性的特点。 首先,门极-源极间电压以0V时考虑(VGS =0)。在此状态下漏极-源极间电压VDS 从0V增加,漏电流ID几乎与VDS 成比例增加,将此区域称为非饱和区。VDS 达到某值以上漏电流ID 的变化变小,几乎达到一定值。此时的ID 称为饱和漏电流(有时也称漏电流用IDSS 表示。与此IDSS 对应的VDS 称为夹断电压VP ,此区域称为饱和区。 其次在漏极-源极间加一定的电压VDS (例如0.8V),VGS 值从0开始向负方向增加,ID 的值从IDSS 开始慢慢地减少,对某VGS 值ID =0。将此时的VGS 称为门极-源极间

22、遮断电压或者截止电压,用VGS (off)示。n沟道JFET的情况则VGS (off) 值带有负的符号,测量实际的JFET对应ID =0的VGS 因为很困难,在放大器使用的小信号JFET时,将达到ID =0.1-10A 的VGS 定义为VGS (off) 的情况多些。 关于JFET为什么表示这样的特性,用图作以下简单的说明。JFET的工作原理用一句话说,就是漏极-源极间流经沟道的ID ,用以门极与沟道间的pn结形成的反偏的门极电压控制ID 。更正确地说,ID 流经通路的宽度,即沟道截面积,它是由pn结反偏的变化,产生耗尽层扩展变化控制的缘故。 在VGS =0的非饱和区域,图10.4.1(a)表

23、示的过渡层的扩展因为不很大,根据漏极-源极间所加VDS的电场,源极区域的某些电子被漏极拉去,即从漏极向源极有电流ID 流动。达到饱和区域如图10.4.2(a)所示,从门极向漏极扩展的过度层将沟道的一部分构成堵塞型,ID饱和。将这种状态称为夹断。这意味着过渡层将沟道的一部分阻挡,并不是电流被切断。 在过渡层由于没有电子、空穴的自由移动,在理想状态下几乎具有绝缘特性,通常电流也难流动。但是此时漏极-源极间的电场,实际上是两个过渡层接触漏极与门极下部附近,由于漂移电场拉去的高速电子通过过渡层。 如图10.4.1(b)所示的那样,即便再增加VDS ,因漂移电场的强度几乎不变产生ID 的饱和现象。 其次

24、,如图10.4.2(c)所示,VGS 向负的方向变化,让VGS =VGS (off) ,此时过渡层大致成为覆盖全区域的状态。而且VDS 的电场大部分加到过渡层上,将电子拉向漂移方向的电场,只有靠近源极的很短部分,这更使电流不能流通。3.场效应管的分类和结构: FET根据门极结构分为如下两大类。其结构如图3所示: 面结型FET(简化为JFET) 门极绝缘型FET(简化为MOS FET)图3. FET的结构各种结构的FET均有门极、源极、漏极3个端子,将这些与双极性晶体管的各端子对应如表1所示。JFET是由漏极与源极间形成电流通道(channel)的p型或n型半导体,与门极形成pn结的结构。另外,

25、门极绝缘型FET是通道部分(Semicoductor)上形成薄的氧化膜(Oxide),并且在其上形成门极用金属薄膜(Metal)的结构。从制造门极结构材质按其字头顺序称为MOS FET。根据JFET、MOS FET的通道部分的半导体是p型或是n型分别有p沟道元件,n沟道元件两种类型。图3均为n沟道型结构图。4.场效应管的传输特性和输出特性图4 JFET的特性例(n沟道)从图4所示的n沟道JFET的特性例来看,让VGS 有很小的变化就可控制ID 很大变化的情况是可以理解的。采用JFET设计放大器电路中,VGS 与ID 的关系即传输特性是最重要的,其次将就传输特性以怎样方式表示加以说明。 图5 传

26、输特性这个传输特性包括JFET本身的结构参数,例如沟道部分的杂质浓度和载体移动性,以致形状、尺寸等,作为很麻烦的解析结果可导出如下公式(公式的推导略去)10.4.1作为放大器的通常用法是VGS 、VGS (off) 0(p沟道)。式(10.4.1)用起来比较困难,多用近似的公式表示如下将此式就VGS 改写则得下式 上(10.4.2) 下(10.4.3) 若说式(10.4.2)是作为JFET的解析结果推导出来的,不如说与实际的JFET的特性或者式(10.4.1)很一致的作为实验公式来考虑好些。图5表示式(10.4.1)、式(10.4.2)及实际的JFET的正规化传输特性,即以ID /IDSS为纵坐标,VGS /VGS (off) 为横坐标的传输特性。n沟道的JFET在VGS 0的范围使用时,因VGS(off) 0,但在图5上考虑与实际的传输特性比较方便起见,将原点向左方向作为正方向。但在设计半导体电路时,需要使用方便且尽可能简单的近似式或实验式。传输特性相当于双极性晶体管的VBE -IE特性,但VBE -IE 特性是与高频用、低频用、功率放大用等用途及品种无关几乎是同一的。与此相反,JFET时,例如即使同一品种IDSS、VGS(off)的数值有很大差异,传输特性按各产品也不同。

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 小学资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁