五种类型一次函数解析式的确定.doc

上传人:豆**** 文档编号:17466368 上传时间:2022-05-24 格式:DOC 页数:5 大小:289KB
返回 下载 相关 举报
五种类型一次函数解析式的确定.doc_第1页
第1页 / 共5页
五种类型一次函数解析式的确定.doc_第2页
第2页 / 共5页
点击查看更多>>
资源描述

《五种类型一次函数解析式的确定.doc》由会员分享,可在线阅读,更多相关《五种类型一次函数解析式的确定.doc(5页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、【精品文档】如有侵权,请联系网站删除,仅供学习与交流五种类型一次函数解析式的确定五种类型一次函数解析式的确定确定一次函数的解析式,是一次函数学习的重要内容。下面就确定一次函数的解析式的题型作如下的归纳,供同学们学习时参考。一、根据直线的解析式和图像上一个点的坐标,确定函数的解析式例1、若函数y=3x+b经过点(2,-6),求函数的解析式。分析:因为,函数y=3x+b经过点(2,-6),所以,点的坐标一定满足函数的关系式,所以,只需把x=2,y=-6代入解析式中,就可以求出b的值。函数的解析式就确定出来了。解:因为,函数y=3x+b经过点(2,-6),所以,把x=2,y=-6代入解析式中,得:-

2、6=32+b,解得:b=-12,所以,函数的解析式是:y=3x-12.二、根据直线经过两个点的坐标,确定函数的解析式例2、直线y=kx+b的图像经过A(3,4)和点B(2,7),求函数的表达式。分析:把点的坐标分别代入函数的表达式,用含k的代数式分别表示b,因为b是同一个,这样建立起一个关于k的一元一次方程,这样就可以把k的值求出来,然后,就转化成例1的问题了。解:因为,直线y=kx+b的图像经过A(3,4)和点B(2,7),所以,4=3k+b,7=2k+b,所以,b=4-3k,b=7-2k,所以,4-3k=7-2k,解得:k=-3,所以,函数变为:y=-3x+b,把x=3,y=4代入上式中,

3、得:4=-33+b,解得:b=13,所以,一次函数的解析式为:y=-3x+13。三、根据函数的图像,确定函数的解析式例3、如图1表示一辆汽车油箱里剩余油量y(升)与行驶时间x(小时)之间的关系求油箱里所剩油y(升)与行驶时间x(小时)之间的函数关系式,并且确定自变量x的取值范围。分析:根据图形是线段,是直线上的一部分,所以,我们可以确定油箱里所剩油y(升)是行驶时间x(小时)的一次函数,明白这些后,就可以利用设函数解析式的方法去求函数的解析式。解:因为,函数的图像是直线,所以,油箱里所剩油y(升)是行驶时间x(小时)的一次函数,设:一次函数的表达式为:y=kx+b,因为,图像经过点A(0,40

4、),B(8,0),所以,把x=0,y=40,x=8,y=0,分别代入y=kx+b中,得:40=k0+b,0=8k+b解得:k=-5,b=40,所以,一次函数的表达式为:y=-5x+40。当汽车没有行驶时,油箱里的油是40升,此时,行驶的时间是0小时;当汽车油箱里的油是0升,此时,行驶的时间是8小时,所以,自变量x的范围是:0x8.四、根据平移规律,确定函数的解析式例4、如图2,将直线向上平移1个单位,得到一个一次函数的图像,那么这个一次函数的解析式是 (08年上海市)分析:仔细观察图像,直线OA经过坐标原点,所以,直线OA表示的一个正比例函数的图像,并且当x=2时 y=4,这样,我们就可以求出

5、,平移的起始函数的解析式,根据函数平移的规律,就可以确定一次函数的解析式。把正比例函数y=kx(k0)的图像向上或者向下平移|b|个单位,就得到一次函数:y=kx+b(k0,b0)的图像。具体平移要领:当b0时,把正比例函数y=kx(k0)的图像向上平移b个单位,就得到一次函数:y=kx+b(k0)的图像。当b0时,把正比例函数y=kx(k0)的图像向下平移|b|个单位,就得到一次函数:y=kx+b(k0)的图像。解:因为,直线OA经过坐标原点,所以,直线OA表示的一个正比例函数的图像,设y=kx,把x=2, y=4代入上式,得:4=2k,解得:k=2,所以,正比例函数的解析式为:y=2x,所

6、以,直线向上平移1个单位,所得解析式为:y=2x+1,所以,这个一次函数的解析式是y=2x+1。五、根据直线的对称性,确定函数的解析式例5、已知直线y=kx+b与直线y= -3x+7关于y轴对称,求k、b的值。分析:直线y=kx+b与直线y= -3x+7关于y轴对称,所以,对称点的横坐标互为相反数,纵坐标保持不变,这可以是解题的理论依据,当然,也可以从已知直线解析式的图像上,确定出两个点的坐标,分别求出它们关于y轴的对称点的坐标,然后利用待定系数法,计算出k、b的值。解法1:设A(x,y)是直线y= -3x+7上一个点,其关于y轴对称的点的坐标为(-x,y ),则有:y= -3x+7,y= -

7、kx+b整理,得:-3x+7= -kx+b,比较对应项,得:k=3,b=7。解法2:设A(m,n)是直线y= -3x+7上一个点,其关于y轴对称的点的坐标为(a,b),则有:b=n,m=-a,因为,A(m,n)是直线y= -3x+7上一个点,所以,点的坐标满足函数的表达式,即n=-3m+7,把n=b,m=-a,代入上式,得:b=-3(-a)+7,整理,得:b=3a+7,即y=3x+7,它实际上与直线y=kx+b是同一条直线,比较对应项,得:k=3,b=7。解法3:因为,y=kx+b,所以,x=,因为,y= -3x+7,所以,x=,因为,直线y=kx+b与直线y= -3x+7关于y轴对称,所以,

8、两直线上点的坐标,都满足纵坐标相同,横坐标坐标互为相反数,所以,= -=,比较对应项,得:y-b= y-7,k=3,所以,k=3,b= 7。解法4、因为,直线y= -3x+7,所以,当x=1时,y=-31+7=4,即点的坐标(1,4);当x=2时,y=-32+7=1,即点的坐标(2,1);因此,(1,4)、(2,1)关于y轴对称的坐标分别为(-1,4)、(-2,1),所以,点(-1,4)、(-2,1)都在直线y=kx+b,所以,留一个练习:1、已知直线y=kx+b与直线y= -3x+7关于x轴对称,求k、b的值。2、已知直线y=kx+b与直线y= -3x+7关于原点对称,求k、b的值。参考答案:1、k=3,b=-7.2、k=-3,b=-7. 中小学教育网( )编辑整理,转载请注明出处!.精品文档.中小学教育网课程推荐网络课程小学:剑桥少儿英语 小学数学思维训练初中:初一、初二、初三强化提高班 人大附中同步课程 高中:高一、高二强化提高班 全国高中数学联赛 人大附中同步课程 高考:高考全程辅导 高考专业介绍与报考指导 高考考前冲刺辅导特色:网络1对1答疑 Q版英语 人大附中校本选修课竞赛:初中数学联赛 高中数学联赛 高中物理奥林匹克竞赛 高中化学奥林匹克竞赛面授课程:中小学教育网学习中心面授班

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 小学资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁