《中考数学精品试题集锦:函数3.doc》由会员分享,可在线阅读,更多相关《中考数学精品试题集锦:函数3.doc(15页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、【精品文档】如有侵权,请联系网站删除,仅供学习与交流中考数学精品试题集锦:函数3.精品文档.新课标中考数学精品试题集锦:函数3(芜湖市)如图,已知 ,现以A点为位似中心,相似比为9:4,将OB向右侧放大,B点的对应点为C(1) 求C点坐标及直线BC的解析式;(2) 一抛物线经过B、C两点,且顶点落在x轴正半轴上,求该抛物线的解析式并画出函数图象;(3) 现将直线BC绕B点旋转与抛物线相交与另一点P,请找出抛物线上所有满足到直线AB距离为的点P河北 周建杰 分类(泰州市)29已知二次函数y1=ax2bxc(a0)的图像经过三点(1,0),(3,0),(0,)(1)求二次函数的解析式,并在给定的直
2、角坐标系中作出这个函数的图像;(5分)(2)若反比例函数y2=(x0)的图像与二次函数y1=ax2bxc(a0)的图像在第一象限内交于点A(x0,y0),x0落在两个相邻的正整数之间,请你观察图像,写出这两个相邻的正整数;(4分)(3)若反比例函数y2=(x0,k0)的图像与二次函数y1=ax2bxc(a0)的图像在第一象限内的交点A,点A的横坐标x0满足2x03,试求实数k的取值范围(5分)第29题图(南京市)(第28题)ABCDOy/km90012x/h428(10分)一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为,两车之间的距离为,图中的折线表示与之间的
3、函数关系根据图象进行以下探究:信息读取(1)甲、乙两地之间的距离为 km;(2)请解释图中点的实际意义;图象理解(3)求慢车和快车的速度;(4)求线段所表示的与之间的函数关系式,并写出自变量的取值范围;问题解决(5)若第二列快车也从甲地出发驶往乙地,速度与第一列快车相同在第一列快车与慢车相遇30分钟后,第二列快车与慢车相遇求第二列快车比第一列快车晚出发多少小时?以下是河南省高建国分类:(巴中市)已知:如图14,抛物线与轴交于点,点,与直线相交于点,点,直线与轴交于点(1)写出直线的解析式(2)求的面积(3)若点在线段上以每秒1个单位长度的速度从向运动(不与重合),同时,点在射线上以每秒2个单位
4、长度的速度从向运动设运动时间为秒,请写出的面积与的函数关系式,并求出点运动多少时间时,的面积最大,最大面积是多少?(自贡市)抛物线的顶点为M,与轴的交点为A、B(点B在点A的右侧),ABM的三个内角M、A、B所对的边分别为m、a、b。若关于的一元二次方程有两个相等的实数根。(1)判断ABM的形状,并说明理由。(2)当顶点M的坐标为(2,1)时,求抛物线的解析式,并画出该抛物线的大致图形。(3)若平行于轴的直线与抛物线交于C、D两点,以CD为直径的圆恰好与轴相切,求该圆的圆心坐标。以下是湖北孔小朋分类:22(本题满分14分)如图,以矩形OABC的顶点O为原点,OA所在的直线为x轴,OC所在的直线
5、为y轴,建立平面直角坐标系已知OA3,OC2,点E是AB的中点,在OA上取一点D,将BDA沿BD翻折,使点A落在BC边上的点F处(1)直接写出点E、F的坐标;(2)设顶点为F的抛物线交y轴正半轴于点P,且以点E、F、P为顶点的三角形是等腰三角形,求该抛物线的解析式;(3)在x轴、y轴上是否分别存在点M、N,使得四边形MNFE的周长最小?如果存在,求出周长的最小值;如果不存在,请说明理由以下是河北省柳超的分类(遵义市)27(14分)如图(1)所示,一张平行四边形纸片,沿对角线把这张纸片剪成和两个三角形(如图(2)所示)将沿直线方向平移(点始终在上,与始终保持平行)当点与重合时停止平移在平移过程中
6、,与交于点,与交于点(1)当平移到图(3)的位置时,试判断四边形是什么四边形?并证明你的结论;(2)设平移距离为,四边形的面积为,求与的函数关系式;并求四边形的面积的最大值;D(图)ACBAACFEC图(1)图(2)图(3)(3)连结(请在图(3)中画出),当平移距离的值是多少时,与相似?以下是江西康海芯的分类:(郴州市)如图10,平行四边形ABCD中,AB5,BC10,BC边上的高AM=4,E为 BC边上的一个动点(不与B、C重合)过E作直线AB的垂线,垂足为F FE与DC的延长线相交于点G,连结DE,DF(1) 求证:BEF CEG(2) 当点E在线段BC上运动时,BEF和CEG的周长之间
7、有什么关系?并说明你的理由(3)设BEx,DEF的面积为 y,请你求出y和x之间的函数关系式,并求出当x为何值时,y有最大值,最大值是多少? 辽宁省 岳伟 分类桂林市正方形的边长为,交的延长线于。()如图,连结,求的面积。()如图,设为上(异于、两点)的一动点,连结、,请判断四边形的面积与正方形的面积有怎样的大小关系?并说明理由。()如图,在点的运动过程中,过作交于,将正方形折叠,使点与点重合,其折线与的延长线交于点,以正方形的、为轴、轴建立平面直角坐标系,设点的坐标为(,),求与之间的函数关系式。(郴州市)如图10,平行四边形ABCD中,AB5,BC10,BC边上的高AM=4,E为 BC边上
8、的一个动点(不与B、C重合)过E作直线AB的垂线,垂足为F FE与DC的延长线相交于点G,连结DE,DF(1) 求证:BEF CEG(2) 当点E在线段BC上运动时,BEF和CEG的周长之间有什么关系?并说明你的理由(3)设BEx,DEF的面积为 y,请你求出y和x之间的函数关系式,并求出当x为何值时,y有最大值,最大值是多少? 图10以下是辽宁省高希斌的分类1(湖北省咸宁市)如图,正方形 ABCD中,点A、B的坐标分别为(0,10),(8,4),点C在第一象限动点P在正方形 ABCD的边上,从点A出发沿ABCD匀速运动,同时动点Q以相同速度在x轴上运动,当P点到D点时,两点同时停止运动,设运
9、动的时间为t秒(1) 当P点在边AB上运动时,点Q的横坐标(长度单位)关于运动时间t(秒)的函数图象如图所示,请写出点Q开始运动时的坐标及点P运动速度;(2) 求正方形边长及顶点C的坐标;(第24题图)(第24题图)(3) 在(1)中当t为何值时,OPQ的面积最大,并求此时P点的坐标(1) 附加题:(如果有时间,还可以继续解答下面问题,祝你成功!)如果点P、Q保持原速度速度不变,当点P沿ABCD匀速运动时,OP与PQ能否相等,若能,写出所有符合条件的t的值;若不能,请说明理由2(湖北省荆州市)如图,等腰直角三角形纸片ABC中,ACBC4,ACB90,直角边AC在x轴上,B点在第二象限,A(1,
10、0),AB交y轴于E,将纸片过E点折叠使BE与EA所在直线重合,得到折痕EF(F在x轴上),再展开还原沿EF剪开得到四边形BCFE,然后把四边形BCFE从E点开始沿射线EA平移,至B点到达A点停止.设平移时间为t(s),移动速度为每秒1个单位长度,平移中四边形BCFE与AEF重叠的面积为S. (1)求折痕EF的长; (2)是否存在某一时刻t使平移中直角顶点C经过抛物线的顶点?若存在,求出t值;若不存在,请说明理由;OCxAC1F1E1B1BFEy (3)直接写出S与t的函数关系式及自变量t的取值范围.3(湖北省鞥仙桃市潜江市江汉油田)如图,直角梯形中,,为坐标原点,点在轴正半轴上,点在轴正半轴
11、上,点坐标为(2,2),= 60,于点.动点从点出发,沿线段向点运动,动点从点出发,沿线段向点运动,两点同时出发,速度都为每秒1个单位长度.设点运动的时间为秒.(1) 求的长;(2) 若的面积为(平方单位). 求与之间的函数关系式.并求为何值时,的面积最大,最大值是多少?(3) 设与交于点.当为等腰三角形时,求(2)中的值. 探究线段长度的最大值是多少,直接写出结论.压轴题解:23(乌鲁木齐)如图9,在平面直角坐标系中,以点为圆心,2为半径作圆,交轴于两点,开口向下的抛物线经过点,且其顶点在上(1)求的大小;(2)写出两点的坐标;(3)试确定此抛物线的解析式;BxyAO图9D(4)在该抛物线上
12、是否存在一点,使线段与互相平分?若存在,求出点的坐标;若不存在,请说明理由24(云南省)(本小题12分)如图,在直角坐标系中,半圆直径为,半圆圆心的坐标为,四边形是矩形,点的坐标为(1)若过点且与半圆相切于点F的切线分别与轴和BC边交于点H与点E,求切线PF所在直线的解析式;(2)若过点和点的切线分别与半圆相切于点和(点、与点、不重合),请求、点的坐标并说明理由(注:第(2)问可利用备用图作答)备用图24(本小题12分)以下是山东任梦送的分类如图11所示,在梯形ABCD中,已知ABCD, ADDB,AD=DC=CB,AB=4以AB所在直线为轴,过D且垂直于AB的直线为y轴建立平面直角坐标系(1
13、)求DAB的度数及A、D、C三点的坐标;(2)求过A、D、C三点的抛物线的解析式及其对称轴L(3)若P是抛物线的对称轴L上的点,那么使PDB为等腰三角形的点P有几个?(不必求点P的坐标,只需说明理由)(茂名)如图,在平面直角坐标系中,抛物线=+经过A(0,4)、B(,0)、 C(,0)三点,且-=5(第25题图)AxyBCO(1)求、的值;(4分)(2)在抛物线上求一点D,使得四边形BDCE是以BC为对角线的菱形;(3分)(3)在抛物线上是否存在一点P,使得四边形BPOH是以OB为对角线的菱形?若存在,求出点P的坐标,并判断这个菱形是否为正方形?若不存在,请说明理由(3分)解: 以下是江苏省赣
14、榆县罗阳中学李金光分类:1(南昌市)如图1,正方形和正三角形的边长都为1,点分别在线段上滑动,设点到的距离为,到的距离为,记为(当点分别与重合时,记)(1)当时(如图2所示),求的值(结果保留根号);(2)当为何值时,点落在对角形上?请说出你的理由,并求出此时的值(结果保留根号);(3)请你补充完成下表(精确到0.01):0.0300.290.290.130.03(4)若将“点分别在线段上滑动”改为“点分别在正方形边上滑动”当滑动一周时,请使用(3)的结果,在图4中描出部分点后,勾画出点运动所形成的大致图形AHFDGCBE图1图2B(E)A(F)DCGHADCB图3HHDACB图4(参考数据:
15、)2(大连市)如图18,点C、B分别为抛物线C1:,抛物线C2:的顶点分别过点B、C作x轴的平行线,交抛物线C1、C2于点A、D,且AB = BD求点A的坐标;如图19,若将抛物线C1:“”改为抛物线“”其他条件不变,求CD的长和的值附加题:如图19,若将抛物线C1:“”改为抛物线“”,其他条件不变,求的值3(沈阳市)如图所示,在平面直角坐标系中,矩形的边在轴的负半轴上,边在轴的正半轴上,且,矩形绕点按顺时针方向旋转后得到矩形点的对应点为点,点的对应点为点,点的对应点为点,抛物线过点(1)判断点是否在轴上,并说明理由;(2)求抛物线的函数表达式;(3)在轴的上方是否存在点,点,使以点为顶点的平
16、行四边形的面积是矩形面积的2倍,且点在抛物线上,若存在,请求出点,点的坐标;若不存在,请说明理由yxO第26题图DECFAB以下是江苏董耀波的分类(黄冈市)已知:如图,在直角梯形COAB中,OCAB,以O为原点建立平面直角坐标系,A,B,C三点的坐标分别为A(8,0),B(8,10),C(0,4),点D为线段BC的中点,动点P从点O出发,以每秒1个单位的速度,沿折线OABD的路线移动,移动的时间为t秒(1)求直线BC的解析式;(2)若动点P在线段OA上移动,当t为何值时,四边形OPDC的面积是梯形COAB面积的?(3)动点P从点O出发,沿折线OABD的路线移动过程中,设OPD的面积为S,请直接
17、写出S与t的函数关系式,并指出自变量t的取值范围;(4)当动点P在线段AB上移动时,能否在线段OA上找到一点Q,使四边形CQPD为矩形?若能,请求出此时动点P的坐标;若不能,请说明理由(襄樊市)如图15,四边形是矩形,将矩形沿直线折叠,使点落在处,交于(1)求的长;(2)求过三点抛物线的解析式;(3)若为过三点抛物线的顶点,一动点从点出发,沿射线以每秒1个单位长度的速度匀速运动,当运动时间(秒)为何值时,直线把分成面积之比为的两部分?(恩施自治州)如图11,在同一平面内,将两个全等的等腰直角三角形ABC和AFG摆放在一起,A为公共顶点,BAC=AGF=90,它们的斜边长为2,若ABC固定不动,
18、AFG绕点A旋转,AF、AG与边BC的交点分别为D、E(点D不与点B重合,点E不与点C重合),设BE=m,CD=n.(1)请在图中找出两对相似而不全等的三角形,并选取其中一对进行证明.(2)求m与n的函数关系式,直接写出自变量n的取值范围. (3)以ABC的斜边BC所在的直线为x轴,BC边上的高所在的直线为y轴,建立平面直角坐标系(如图12).在边BC上找一点D,使BD=CE,求出D点的坐标,并通过计算验证BDCE=DE. (4)在旋转过程中,(3)中的等量关系BDCE=DE是否始终成立,若成立,请证明,若不成立,请说明理由. G图11FEDCBAGyx图12OFEDCBA(苏州)如图,在等腰
19、梯形中,动点从点出发沿以每秒1个单位的速度向终点运动,动点从点出发沿以每秒2个单位的速度向点运动两点同时出发,当点到达点时,点随之停止运动(1)梯形的面积等于 ;(2)当时,点离开点的时间等于 秒;ACQDPB(第26题)(3)当三点构成直角三角形时,点离开点多少时间?(苏州)课堂上,老师将图中绕点逆时针旋转,在旋转中发现图形的形状和大小不变,但位置发生了变化当旋转时,得到已知,(1)的面积是 ;点的坐标为( , );点的坐标为( , );(2)课后,小玲和小惠对该问题继续进行探究,将图中绕的中点逆时针旋转得到,设交于,交轴于此时,和的坐标分别为,和,且经过点在刚才的旋转过程中,小玲和小惠发现
20、旋转中的三角形与重叠部分的面积不断变小,旋转到时重叠部分的面积(即四边形的面积)最小,求四边形的面积(3)在(2)的条件下,外接圆的半径等于 yx11B1A1A(4,2)B(3,0)O图yx11A(4,2)B(3,0)O图(1,3)(3,2)D(3,-1)CE(无锡)如图,已知点从出发,以1个单位长度/秒的速度沿轴向正方向运动,以为顶点作菱形,使点在第一象限内,且;以为圆心,为半径作圆设点运动了秒,求:(1)点的坐标(用含的代数式表示);(2)当点在运动过程中,所有使与菱形的边所在直线相切的的值(常州市)如图,抛物线与x轴分别相交于点B、O,它的顶点为A,连接AB,把AB所的直线沿y轴向上平移
21、,使它经过原点O,得到直线l,设P是直线l上一动点.(1) 求点A的坐标;(2) 以点A、B、O、P为顶点的四边形中,有菱形、等腰梯形、直角梯形,请分别直接写出这些特殊四边形的顶点P的坐标;(3) 设以点A、B、O、P为顶点的四边形的面积为S,点P的横坐标为x,当时,求x的取值范围. (无锡)已知抛物线与它的对称轴相交于点,与轴交于,与轴正半轴交于(1)求这条抛物线的函数关系式;(2)设直线交轴于是线段上一动点(点异于),过作轴交直线于,过作轴于,求当四边形的面积等于时点的坐标(威海市)如图,在梯形ABCD中,ABCD,AB7,CD1,ADBC5点M,N分别在边AD,BC上运动,并保持MNAB
22、,MEAB,NFAB,垂足分别为E,FCDABEFNM(1)求梯形ABCD的面积; (2)求四边形MEFN面积的最大值 (3)试判断四边形MEFN能否为正方形,若能,求出正方形MEFN的面积;若不能,请说明理由 (枣庄市)把一副三角板如图甲放置,其中,斜边,把三角板DCE绕点C顺时针旋转15得到D1CE1(如图乙)这时AB与CD1相交于点,与D1E1相交于点F(1)求的度数;(2)求线段AD1的长;(甲)ACEDBB(乙)AE11CD11OF(3)若把三角形D1CE1绕着点顺时针再旋转30得D2CE2,这时点B在D2CE2的内部、外部、还是边上?说明理由三、解答题1.(甘肃省白银市)如图,在平
23、面直角坐标系中,四边形OABC是矩形,点B的坐标为(4,3)平行于对角线AC的直线m从原点O出发,沿x轴正方向以每秒1个单位长度的速度运动,设直线m与矩形OABC的两边分别交于点M、N,直线m运动的时间为t(秒)(1) 点A的坐标是_,点C的坐标是_; (2) 当t= 秒或 秒时,MN=AC;(3) 设OMN的面积为S,求S与t的函数关系式; (4) 探求(3)中得到的函数S有没有最大值?若有,求出最大值;若没有,要说明理由以下是山西省王旭亮分类(重庆市)已知:如图,抛物线与y轴交于点C(0,4),与x轴交于点A、B,点A的坐标为(4,0)。(1)求该抛物线的解析式;(2)点Q是线段AB上的动
24、点,过点Q作QEAC,交BC于点E,连接CQ。当CQE的面积最大时,求点Q的坐标;(3)若平行于x轴的动直线与该抛物线交于点P,与直线AC交于点F,点D的坐标为(2,0)。问:是否存在这样的直线,使得ODF是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由。(上海市)已知,(如图)是射线上的动点(点与点不重合),是线段的中点(1)设,的面积为,求关于的函数解析式,并写出函数的定义域;(2)如果以线段为直径的圆与以线段为直径的圆外切,求线段的长;(3)联结,交线段于点,如果以为顶点的三角形与相似,求线段的长BADMECBADC备用图以下是江苏省王伟根分类全国中考数学试题分类汇编(压轴题
25、)1(扬州市)已知:矩形ABCD中,AB=1,点M在对角线AC上,直线l过点M且与AC垂直,与AD相交于点E。(1)如果直线l与边BC相交于点H(如图1),AM=AC且AD=a,求AE的长;(用含a的代数式表示)(2)在(1)中,又直线l 把矩形分成的两部分面积比为2:5,求a的值;(3)若AM=AC,且直线l经过点B(如图2),求AD的长;(4)如果直线l分别与边AD、AB相交于点E、F,AM=AC。设AD长为x,AEF的面积为y,求y与x的函数关系式,并指出x的取值范围。(求x的取值范围可不写过程)2. (盐城)如图甲,在ABC中,ACB为锐角点D为射线BC上一动点,连接AD,以AD为一边
26、且在AD的右侧作正方形ADEF解答下列问题:(1)如果AB=AC,BAC=90当点D在线段BC上时(与点B不重合),如图乙,线段CF、BD之间的位置关系为 ,数量关系为 第28题图图甲图乙图丙当点D在线段BC的延长线上时,如图丙,中的结论是否仍然成立,为什么?(2)如果ABAC,BAC90,点D在线段BC上运动试探究:当ABC满足一个什么条件时,CFBC(点C、F重合除外)?画出相应图形,并说明理由(画图不写作法) (3)若AC,BC=3,在(2)的条件下,设正方形ADEF的边DE与线段CF相交于点P,求线段CP长的最大值3.(江西省)如图1,正方形ABCD和正三角形EFG的边长都为1,点E,
27、F分别在线段AB,AD上滑动,设点G到CD的距离为x,到BC的距离为y,记HEF为(当点E,F分别与B,A重合时,记=00)(1)当=00时(如图2所示),求x,y的值(结果保留根号);(2)当为何值时,点G落在对角形AC上?请说出你的理由,并求出此时x,y的值(结果保留根号);(3)请你补充完成下表(精确到0.01):00150300450600750900x0.0300.29y0.290.130.03AHFDGCBE图1图2B(E)A(F)DCGHADCB图3HHDACB图4(4)若将“点E,F分别在线段AB,AD上滑动”改为“点E,F分别在正方形ABCD边上滑动”当滑动一周时,请使用(3
28、)的结果,在图4中描出部分点后,勾画出点G运动所形成的大致图形(参考数据:1.732,sin150=0.259,sin750=0.966)以下是湖南文得奇的分类:xyF-2-4-6ACEPDB521246G(湘潭) (本题满分10分)已知抛物线经过点A(5,0)、B(6,-6)和原点.(1)求抛物线的函数关系式;(2)若过点B的直线与抛物线相交于点C(2,m),请求出OBC的面积S的值.(3)过点C作平行于x轴的直线交y轴于点D,在抛物线对称轴右侧位于直线DC下方的抛物线上,任取一点P,过点P作直线PF平行于y轴交x轴于点F,交直线DC于点E. 直线PF与直线DC及两坐标轴围成矩形OFED(如
29、图),是否存在点P,使得OCD与CPE相似?若存在,求出点P的坐标;若不存在,请说明理由. 2.(永州) (10分)如图,已知O的直径AB2,直线m与O相切于点A,P为O上一动点(与点A、点B不重合),PO的延长线与O相交于点C,过点C的切线与直线m相交于点D(1)求证:APCCOD(2)设APx,ODy,试用含x的代数式表示y(3)试探索x为何值时,ACD是一个等边三角形3.(10分)如图,二次函数yax2bxc(a0)与坐标轴交于点A、B、C且OA1,OBOC3 (1)求此二次函数的解析式(2)写出顶点坐标和对称轴方程(3)点M、N在yax2bxc的图像上(点N在点M的右边),且MNx轴,
30、求以MN为直径且与x轴相切的圆的半径4.(益阳) (本题10分)23. 两个全等的直角三角形ABC和DEF重叠在一起,其中A=60,AC=1. 固定ABC不动,将DEF进行如下操作: (1) 如图11(1),DEF沿线段AB向右平移(即D点在线段AB内移动),连结DC、CF、FB,四边形CDBF的形状在不断的变化,但它的面积不变化,请求出其面积.ABEFCD图11(1)温馨提示:由平移性质可得CFAD,CF=AD(2)如图11(2),当D点移到AB的中点时,请你猜想四边形CDBF的形状,并说明理由.ABEFCD图11(2)(3)如图11(3),DEF的D点固定在AB的中点,然后绕D点按顺时针方
31、向旋转DEF,使DF落在AB边上,此时F点恰好与B点重合,连结AE,请你求出sin的值.AB(E)(F)CD图11(3)E(F)5.(本题12分)我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线.如图12,点A、B、C、D分别是“蛋圆”与坐标轴的交点,已知点D的坐标为(0,-3),AB为半圆的直径,半圆圆心M的坐标为(1,0),半圆半径为2.(1) 请你求出“蛋圆”抛物线部分的解析式,并写出自变量的取值范围;(2)你能求出经过点C的“蛋圆”切线的解析式吗?试试看;AOBMDC解图12yxE(3)开动脑筋想一想,相信你能
32、求出经过点D的“蛋圆”切线的解析式.(以下是安徽张仕春分类)1(内江市) 如图,内接于O,点是的中点边上的高相交于点试证明:(1);(2)四边形是菱形1、(本小题满分12分) (宜宾市)已知:如图,抛物线y=-x2+bx+c与x轴、y轴分别相交于点A(-1,0)、B(0,3)两点,其顶点为D.(1) 求该抛物线的解析式;(2) 若该抛物线与x轴的另一个交点为E. 求四边形ABDE的面积;(3) AOB与BDE是否相似?如果相似,请予以证明;如果不相似,请说明理由.(注:抛物线y=ax2+bx+c(a0)的顶点坐标为)(广州市数学中考试题)25、(14分)如图11,在梯形ABCD中,ADBC,A
33、B=AD=DC=2cm,BC=4cm,在等腰PQR中,QPR=120,底边QR=6cm,点B、C、Q、R在同一直线l上,且C、Q两点重合,如果等腰PQR以1cm/秒的速度沿直线l箭头所示方向匀速运动,t秒时梯形ABCD与等腰PQR重合部分的面积记为S平方厘米(1)当t=4时,求S的值(2)当,求S与t的函数关系式,并求出S的最大值图1122. (广东省中山市)(本题满分9分)将两块大小一样含30角的直角三角板,叠放在一起,使得它们的斜边AB重合,直角边不重合,已知AB=8,BC=AD=4,AC与BD相交于点E,连结CD(1)填空:如图9,AC= ,BD= ;四边形ABCD是 梯形.(2)请写出
34、图9中所有的相似三角形(不含全等三角形).(3)如图10,若以AB所在直线为轴,过点A垂直于AB的直线为轴建立如图10的平面直角坐标系,保持ABD不动,将ABC向轴的正方向平移到FGH的位置,FH与BD相交于点P,设AF=t,FBP面积为S,求S与t之间的函数关系式,并写出t的取值值范围.EDCHFGBAPyx图1010DCBAE图91.(聊城市)(本题满分12分)如图,把一张长10cm,宽8cm的矩形硬纸板的四周各剪去一个同样大小的正方形,再折合成一个无盖的长方体盒子(纸板的厚度忽略不计)第25题图(1)要使长方体盒子的底面积为48cm2,那么剪去的正方形的边长为多少?(2)你感到折合而成的
35、长方体盒子的侧面积会不会有更大的情况?如果有,请你求出最大值和此时剪去的正方形的边长;如果没有,请你说明理由;(3)如果把矩形硬纸板的四周分别剪去2个同样大小的正方形和2个同样形状、同样大小的矩形,然后折合成一个有盖的长方体盒子,是否有侧面积最大的情况;如果有,请你求出最大值和此时剪去的正方形的边长;如果没有,请你说明理由2.(泰安市)在等边中,点为上一点,连结,直线与分别相交于点,且ABCFDP图3ABCDP图2EllEFABCDP图lEF(第26题) (1)如图1,写出图中所有与相似的三角形,并选择其中一对给予证明;(2)若直线向右平移到图2、图3的位置时(其它条件不变),(1)中的结论是
36、否仍然成立?若成立,请写出来(不证明),若不成立,请说明理由;(3)探究:如图1,当满足什么条件时(其它条件不变),?请写出探究结果,并说明理由(说明:结论中不得含有未标识的字母)1、(本小题满分12分) (宜宾市)已知:如图,抛物线y=-x2+bx+c与x轴、y轴分别相交于点A(-1,0)、B(0,3)两点,其顶点为D.(4) 求该抛物线的解析式;(5) 若该抛物线与x轴的另一个交点为E. 求四边形ABDE的面积;(6) AOB与BDE是否相似?如果相似,请予以证明;如果不相似,请说明理由.(注:抛物线y=ax2+bx+c(a0)的顶点坐标为)2.(四川省资阳市)如图10,已知点A的坐标是(1,0),点B的坐标是(9,0),以AB为直径作O,交y轴的负半轴于点C,连接AC、BC,过A、B、C三点作抛物线(1)求抛物线的解析式;(2)点E是AC延长线上一点,BCE的平分线CD交O于点D,连结BD,求直线BD的解析式;(3)在(2)的条件下,抛物线上是否存在点P,使得PDBCBD?如果存在,请求出点P的坐标;如果不存在,请说明理由