fluent边界条件.doc

上传人:豆**** 文档编号:17410548 上传时间:2022-05-23 格式:DOC 页数:32 大小:297KB
返回 下载 相关 举报
fluent边界条件.doc_第1页
第1页 / 共32页
fluent边界条件.doc_第2页
第2页 / 共32页
点击查看更多>>
资源描述

《fluent边界条件.doc》由会员分享,可在线阅读,更多相关《fluent边界条件.doc(32页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、【精品文档】如有侵权,请联系网站删除,仅供学习与交流fluent边界条件.精品文档.壁面边界条件壁面边界条件用于限制流体和固体区域。在粘性流动中,壁面处默认为非滑移边界条件,但是你也可以根据壁面边界区域的平动或者转动来指定切向速度分量,或者通过指定剪切来模拟滑移壁面(你也可以在FLUENT中用对称边界类型来模拟滑移壁面,但是使用对称边界就需要在所有的方程中应用对称条件。详情请参阅对称边界条件一节)。在当地流场的详细资料基础上可以计算出流体和壁面之间的剪应力和热传导。壁面边界的输入概述壁面边界条件需要输入下列信息:l 热边界条件(对于热传导计算) l 速度边界条件(对于移动或旋转壁面) l 剪切

2、(对于滑移壁面,此项可选可不选)l 壁面粗糙程度(对于湍流,此项可选可不选) l 组分边界条件(对于组分计算) l 化学反应边界条件(对于壁面反应)l 辐射边界条件(对于P-1模型、DTRM或者DO模型的计算) l 离散相边界条件(对于离散相计算)在壁面处定义热边界条件如果你在解能量方程,你就需要在壁面边界处定义热边界条件。在FLUENT中有五种类型的热边界条件:l 固定热流量l 固定温度l 对流热传导l 外部辐射热传导l 外部辐射热传导和对流热传导的结合如果壁面区域是双边壁面(在两个区域之间形成界面的壁面,如共轭热传导问题中的流/固界面)就可以得到这些热条件的子集,但是你也可以选择壁面的两边

3、是否耦合。详情请参阅在壁面处定义热边界条件。下面各节介绍了每一类型的热条件的输入。如果壁面具有非零厚度,你还应该设定壁面处薄壁面热阻和热生成的相关参数,详情请参阅在壁面处定义热边界条件。热边界条件由壁面面板输入(Figure 1),它是从边界条件打开的(见设定边界条件一节)。Figure 1:壁面面板对于固定热流量条件,在热条件选项中选择热流量。然后你就可以在热流量框中设定壁面处热流量的适当数值。设定零热流量条件就定义了绝热壁,这是壁面的默认条件。选择固定温度条件,在壁面面板中的热条件选项中选择温度选项。你需要指定壁面表面的温度。壁面的热传导可以用温度边界条件一节中的方程1或3来计算。对于对流

4、热传导壁面,在热条件中选择对流。输入热传导系数以及自有流温度,FLUENT就会用对流热传导边界条件中的方程1来计算壁面的热传导。如果你所模拟的是从外界而来的辐射热传导,你可以在壁面面板中激活辐射选项,然后设定外部发射率以及外部辐射温度。如果选择混合选项,你就可以选择对流和辐射结合的热条件。对于这种条件,你需要设定热传导系数、自由流温度、外部发射率以及外部辐射温度。默认情况下壁面厚度为零。然而你可以结合任何的热条件来模拟两个区域之间材料的薄层。例如:你可以模拟两个流体区域之间的薄金属片的影响,固体区域上的薄层或者两个固体区域之间的接触阻力。FLUENT会解一维热传导方程来计算壁面所提供的热阻以及

5、壁面内部的热生成。在热传导计算中要包括这些影响,你就需要指定材料的类型,壁面的厚度以及壁面的热生成速度。在材料名字下拉菜单中选择材料类型,然后在壁面厚度框中指定厚度。壁面的热阻为D x/k,其中k是壁面材料的热传导系数,D x是壁面厚度。你所设定的热边界条件将在薄壁面的外部指定,如图2所示,其中T_b壁面处所指定的固定温度。Figure 2: 热条件被指定在薄壁面的外侧在热生成速度框中指定壁面内部热生成速度。这一选项是非常有用的,比方说,模拟已知电能分布的印刷电路板。如果壁面区域的每一边是流体或者固体区域。当你具有这类壁面区域的网格读入到FLUENT,一个阴影区域会自动产生,以便于壁面的每一边

6、都是清楚的壁面区域。在壁面区域面板中,阴影区域的名字将在阴影表面区域框中显示出来。你可以选择在每一个区域指定不同的热条件或者将两个区域耦合:l 要耦合壁面的两个边,在热条件选项中选择耦合选项(只有壁面是双边时这一选项才会出现在壁面面板中)。不需要输入任何附加的热边界信息,因为解算器会直接从相邻单元的解中计算出热传导。然而你可以指定材料类型、壁面厚度以及热生成速度来计算壁面热阻,详情请参阅壁面处热边界条件的定义一节。注意,你所设定的壁面每一边的阻抗参数会自动分配给它的阴影壁面区域。指定壁面内的热生成速度是很有用的,比如,模拟已知电能分布但是不知道热流量或者壁面温度的印刷电路板。 l 要解耦壁面的

7、两个边,并为每一个边指定不同的热条件,在热条件类型中选择温度或者热流作为热条件类型(对于双边壁面,不应用对流和热辐射)。壁面和它的阴影之间的关系会被保留,以便于你在以后可以再次耦合它们。你需要设定所选的热条件的相关参数,前面对这方面的内容已经叙述过了不再重复。两个非耦合壁面具有不同的厚度,并且相互之间有效地绝缘。如果对于非耦合壁面指定非零厚度的壁面,你所设定的热边界条件就会在两个薄壁的外边的那个边指定,如图3所示,其中T_b1和T_b2分别是两个壁面的温度或者热流量。k_w1和k_w2时耦合薄壁面的热传导率。注意图3中两个壁面之间的缺口并不是模型的一部分,它只是在图形中用来表明每一个非耦合壁面

8、的热边界条件在哪里应用。Figure 3: 热条件在非耦合薄壁的外边指定对移动壁面定义速度条件如果你希望在计算中包括壁面的切向运动,你就需要定义平动或者转动速度。壁面速度条件在壁面面板的运动部分输入,在这里你可以激活面板底部的移动壁面选项来显示和编辑,此时壁面面板会扩大显示为下图:Figure 1: 移动壁面的壁面面板如果邻近壁面的单元区域是移动的,(比如你使用移动参考系或者滑动网格)你可以激活相对邻近单元区域选项来选择指定的相对移动区域的移动速度。如果指定相对速度,那么相对速度为零意味着在相对坐标系中壁面是静止的,因此在绝对坐标系中以相对于邻近单元的速度运行。如果选择绝对速度(激活绝对选项)

9、,速度为零就意味着避免在绝对坐标系中是静止的,而且以相对于邻近单元的速度以动,但是在相对坐标系中方向相反。如果你使用一个或多个移动参考系、滑动网格或者混合平面,并且你希望壁面固定在移动参考系上。推荐你指定相对速度(默认)而不是绝对速度。然后,如果你修改邻近单元区域的速度,就像你指定绝对速度一样,你就不需要对壁面速度做任何改变。注意:如果邻近单元不是移动的那么它和相对选项是等同的。对于包括线性,壁面边界是平动的问题(如以移动带作为壁面的矩形导管),你可以激活平动选项,并指定壁面速度和方向(X,Y,Z矢量)。作为默认值,通过指定平动速度为零,壁面移动是未被激活的。对于包括转动壁面运动的问题,你可以

10、激活转动选项,并对指定的旋转轴定义旋转速度。要定义轴,请设定旋转轴方向和和旋转轴原点。这一轴和邻近单元区域所使用的旋转轴是无关的,而且和其它的壁面旋转轴无关。对于三维问题旋转轴是通过指定坐标原点的矢量,它平行于在旋转轴方向框中指定的从(0,0,0)到(X,Y,Z)的矢量。对于二维问题,你只需要指定旋转轴起点,旋转轴是通过指定点的z向矢量。对于二维轴对称问题,你不必定义旋转轴:通常是绕x轴旋转,起点为(0,0)。需要注意的是,只有在壁面限制表面的旋转时,模拟切向旋转运动才是正确的(比如圆环或者圆柱)。还要注意只有对静止参考系内的壁面才能指定旋转运动。如定义壁面处热边界条件所讨论的,当你读入具有双

11、边壁面的网格时(它在流/固区域形成界面),会自动形成阴影区域来区分壁面区域的每一边。对于双边壁面,壁面和阴影区域可能指定不同的运动,而不管它们耦合与否。然而需要注意的是,你不能指定邻近固体区域的壁面(或阴影)的运动。模拟滑移壁面作为默认,无粘流动的壁面是非滑移条件,但是在FLUENT中,你可以指定零或非零剪切来模拟滑移壁面。要指定剪切,在壁面面板中选择指定剪切应力项(见下图),然后你可以在剪切应力项中输入剪切的x, y, 和z分量指定剪切应力选项不是用壁面函数。Figure 1: 滑移壁面的壁面面板在湍流壁面限制的流动中模拟壁面粗糙度的影响流过粗糙表面的流体会有各种各样的情况。比如流过机翼表面

12、、船体、涡轮机、换热器以及管系统的流动,还有具有各种粗糙度的地面上的大气边界层。壁面粗糙度影响了壁面处的阻力、热传导和质量输运。如果你是在模拟具有壁面限制的湍流流动,壁面粗糙度的影响是很大的,你可以通过修改壁面定律的粗糙度来考虑避免粗糙度影响。粗糙管和隧道的实验表明了当用半对数规则画图时,近粗糙壁面的平均速度分布具有相同的坡度(1/k)但是具有不同的截止点(在对数定律中附加了常数B)。对于粗糙壁面,平均速度的壁面定律具有的形式为:其中u* = C_m1/4k1/2;是粗糙度函数,它衡量了由于粗糙影响而导致的截止点的转移。一般说来,依赖于粗糙的类型(相同的沙子、铆钉、螺纹、肋、铁丝网等)和尺寸。

13、对于各种类型的粗糙情况没有统一而有效的公式。然而,对于沙粒粗糙情况和各种类型的统一粗糙单元,人们发现和无量纲高度K_s + = r K_s u*/m具有很好的相关性,其中K_s 是物理粗糙高度u* = C_m1/4k1/2。实验数据分析表明粗糙函数并不是K_s+的单值函数,而是依赖于K_s+的值有不同的形式。观察表明有三种不同的类型:l 液体动力光滑(K_s+ 3 5) l 过渡区(3 5 K_s+ 70 90) 根据上述数据,在光滑区域内粗糙度的影响可以忽略,但是在过渡区域就越来越重要了,在完全粗糙区域具有完全的影响。在FLUENT中,整个粗糙区域分为三个区域。粗糙函数的计算源于Nikura

14、dses数据27基础上的由Cebeci和Bradshaw提出的公式:对于液体动力光滑区域(K_s+ 2.25):对于过渡区(2.25 K_s+ 90):在解算器中,给定粗糙参数之后,粗糙函数(K_s+)用相应的公式计算出来。方程1中的修改之后的壁面定律被用于估计壁面处的剪应力以及其它的对于平均温度和湍流量的壁面函数。要模拟壁面粗糙的影响,你必须指定两个参数:粗糙高度K_s和粗糙常数C_K_s。默认的粗糙高度为零,这符合光滑壁面。对于产生影响的粗糙度,你必须指定非零的K_s。对于同沙粒粗糙情况,沙粒的高度可以简单的被看作K_s。然而,对于非同一沙粒平均直径(D_50)应该是最有意义的粗糙高度。对

15、于其它类型的粗糙情况,需要用同等意义上的沙粒粗糙高度K_s。适当的粗糙常数(C_K_s)主要由给定的粗糙情况决定。默认的粗糙常数(C_K_s = 0.5)是用来满足在使用k-e湍流模型时,它可以在具有同一沙粒粗糙的充满流体的管中再现Nikuradses阻力数据。当你模拟和同一沙粒粗糙不同的情况时,你就需要调解粗糙常数了。例如,有些实验数据表明,对于非同一沙粒、肋和铁丝网,粗糙常数(C_K_s = 0.5 1.0)具有更高的值。不幸的是,对于任意类型的粗糙情况还没有一个清楚的选择粗糙常数C_K_s的指导方针。需要注意的是,要求邻近壁面单元应该小于粗糙高度并不是物理意义上的问题。对于最好的结果来说

16、,要保证从壁面到质心的距离要比K_s大。定义壁面的组分边界条件FLUENT默认所有的组分在壁面处具有零梯度条件(除了参加表面化学反应的组分),但是可以指定壁面处的组分质量分数。也就是如同在入口处指定的Dirichlet边界条件,也可以用于壁面。如果你希望保留默认的零梯度条件,你就不必输入任何东西了。如果你希望指定壁面处的组分质量分数,步骤如下:1.在壁面面板的组分边界条件中,选择组分名字右边的下拉列表指定的质量分数(而不是零梯度),此时面板会扩展为包含组分质量分数的对话框。Figure 1: 组分边界条件输入的壁面面板2.输入相应的组分质量分数。每一组分的边界条件类型是分别指定的,所以对于不同

17、的组分你可以采用不同的方法。注意:如果在湍流流动中你使用组分的Dirichle条件,FLUENT就不会是用壁面函数来计算壁面处的组分扩散流量。定义壁面的反应边界条件如果你在组分模型面板中激活了表面反应的模拟,你就可以表明在壁面处表面反应是否被激活。激活或关闭表面反应,壁面面板就会相应地打开或关闭表面反应选项。注意:组分在壁面处是假定为零梯度条件的,它不参加任何表面反应。定义壁面的辐射边界条件如果你打算使用P-1辐射模型、DTRM或者DO模型,你就需要设定壁面的(内部)发散率以及(可选)黑体温度。详情请参阅设定边界条件一节(Rosseland不需要任何边界条件的输入,因为FLUENT假定发射率为

18、1,如果你使用DO模型你也要定义壁面为漫反射、镜面反射或者半透明,详情请参阅设定辐射边界条件)定义壁面的离散相边界条件如果你是在模拟粒子的离散相,你就可以在壁面处设定粒子轨道详情请参阅离散向模型的边界设定。壁面边界的默认设定默认热边界条件为固定的热流为零,壁面默认为不移动。壁面处的剪应力计算程序对于非滑移壁面条件,FLUENT使用邻近壁面或者流体边界的流动性质来预测壁面处流体的剪应力。在层流流动制,这一计算简单地依赖于壁面处的速度梯度,在湍流流动中则使用壁面限制湍流流动的近壁面处理方法。对于指定剪切的壁面, FLUENT会在边界处计算切向速度。如果是无粘流动,所有的壁面都使用滑移条件,所以它们

19、是无摩擦的而且对邻近流体单元不施加剪应力。层流中的剪应力计算在层流流动中壁面剪应力和法向速度梯度的关系为:当壁面处的速度梯度很大时,你必须保证网格足够精细,这样才能解出边界层的精确结果。层流流动中近壁面节点放置的指导方针在节点密度和节点束中介绍。湍流中的剪应力计算湍流流动的壁面处理,在壁面限制的湍流流动的近壁面处理一节中叙述。壁面边界的热传导计算温度边界条件当在壁面处应用固定温度条件,从流体单元到壁面的热传导,由下式计算:其中:h_f=流体边界当地热传导系数T_w=壁面表面温度T_f=当地流体温度q=壁面处传来的对流热流量q_rad=辐射热流量注意:流体边界热传导系数是基于当地流场条件计算得来

20、的(比如说湍流层次、温度以及速度轮廓),请参阅流体边界热传导计算一节的方程1,以及标准壁面函数9。从固体单元到壁面边界的热传导公式为:其中:k_s=固体的热传导率T_s=当地固体温度D n=壁面表面和固体单元中心的距离。热流边界条件当你在壁面处定义热流边界条件时,你需要在壁面表面指定热流量。FLUENT使用温度边界条件中的方程1,然后你就可以输入热流量来确定邻近流体单元的壁面表面温度:其中,流体边界热传导系数已经在温度边界条件中叙述了,它是基于当地流场条件计算得到的。当壁面和固体区域交界时,壁面表面的温度为:上述两式的变量请参阅温度边界条件一节。对流热传导边界条件当你在壁面处指定对流热传导系数

21、作为边界条件时,FLUENT使用你所输入的外部热传导系数以及外部热沉(heat sink)温度来计算到壁面的热流量:其中:h_ext=你所定义的外部热传导系数T_ext=你所定义的外部热沉温度q_rad=辐射热流量上述方程假定壁面零厚度。外部辐射边界条件当使用外部辐射条件时,流入壁面的热流量为:其中:e_ext=你所定义的外部壁面表面的发射率s=Stefan-Boltzmann常数T_w=壁面的表面温度T_?=区域外部的温度的辐射源或者消失(sink)处q_rad=从内部去向壁面辐射的热流量Equation 1假定壁面厚度为零。外部对流和辐射结合的边界条件当你选择组合的外部热传导方程条件时,到

22、壁面的热流量为:其中的变量已经在对流热传导边界条件和外部辐射边界条件中定义了。Equation 1假定壁面厚度为零。流动边界热传导系数的计算在层流流动中,壁面处流体边界热传导是用应用于壁面的Fourier定律计算得到的,FLUENT使用它的离散格式为:其中n是垂直于壁面的当地坐标。对于湍流流动,FLUENT对于从热和动量迁移中类比得到的温度使用壁面定律93。详细内容请参阅标准壁面函数。对称边界条件对称边界条件用于所计算的物理外形以及所期望的流动/热解具有镜像对称的特征的情况中。也可以用它们来模拟粘性流动的滑移壁面。本节描述了对称平面内流动的处理,并提供了一些使用对称边界的例子。在对称边界条件中

23、你不需要定义任何边界条件,但是你必须谨慎地定义对称边界的位置。在对称外形的中线处,你应该使用轴边界类型而不是对称边界类型,如轴边界条件一节中的的图1,详细内容请参阅轴边界条件。对称边界的计算程序FLUENT假定所有量通过对称边界的流量为零。经过对称平面的对流流量为零,因此对称边界的法向速度为零。通过对称平面没有扩散流量:因此所有流动变量的法向梯度在对称平面内为零。因此对称边界条件可以总结如下:l 对称平面内法向速度为零l 对称平面内所有变量的法向梯度为零如上所述,对称的定义要求这些条件决定流过对称平面的流量为零。因为对称边界的剪应力为零,所以在粘性流动计算中它也可以用滑移壁面来解释。对称边界的

24、例子对称边界用于减少计算模拟的范围,它只需要模拟所有物理系统的一个对称子集。下面两个图是通过该种方法使用对称边界的例子。Figure 1:使用对称边界模拟三维管道的四分之一Figure 2: 使用对称边界模拟圆形截面的四分之一下面的图则是误用对称平面的两个例子,在这两个例子中,虽然几何外形是对称的,但是流动本身却不符合对称边界条件的要求。在第一个例子中浮力产生了非对称流动。在第二个例子中,流动中的涡流产生了一个垂直于应该是对称平面的流动。需要注意的是,这两个粒子都要使用旋转周期性边界(请参阅周期性边界一节的图一)Figure 3: 对称的误用周期性边界条件周期性边界条件用来解决,物理模型和所期

25、待的流动的流动/热解具有周期性重复的特点。FLUENT提供了两种类型的周期性边界条件。第一种类型不允许通过周期性平面具有压降(对于FLUENT4用户来说:这一类型的周期性边界是指FLUENT4中的圆柱形边界)。第二种类型允许通过平移周期性边界具有压降,它是你能够模拟完全发展的周期性流动(在FLUENT4中是周期性边界)。本节讨论了无压降的周期性边界条件。在周期性流动和热传导一节中,完全发展的周期性模拟能力得到了详尽的描述。周期性边界的例子周期性边界条件用于模拟通过计算模型内的两个相反平面的流动是相同的情况。下图是周期性边界条件的典型应用。在这些例子中,通过周期性平面进入计算模型的流动和通过相反

26、的周期性平面流出流场的流动是相同的。正如这些例子所示,周期性平面通常是成对使用的。Figure 1: 在圆柱容器中使用周期性边界定义涡流周期性边界的输入对于没有任何压降的周期性边界,你只需要输入一个东西,那就是你的所模拟的几何外形是旋转性周期还是平移性周期。(对于有周期性压降的周期流还要输入其它的东西,请参阅周期性流动和热传导一节。)旋转性周期边界是指关于旋转对称几何外形中线形成了一个包括的角度。本节中的图一就是旋转性周期。平移性周期边界是指在直线几何外形内形成周期性边界。下面两图是平移性周期边界:Figure 1: 物理区域Figure 2: 所模拟的区域对于周期性边界,你需要在周期性面板(

27、下图)中指定平移性边界还是旋转性边界,该面板是从设定边界条件菜单中打开的。Figure 3: 周期性面板(对于耦合解算器,周期性面板中将会有附加的选项,这一选项允许你指定压力跳跃,详细内容请参阅周期性流动和热传导一节。)如果区域是旋转性区域,请选择旋转性区域类型。如果是平移性就选择平移性区域类型。对于旋转性区域,解算器会自动计算通过周期性区域的旋转角度。旋转轴是为邻近单元指定的旋转轴。注意:对于使用旋转周期性边界来说,你不必指定邻近单元区域为移动的。例如,你能够使用具有管的平切片的非旋转坐标系来模拟三维管流,管的切片需要具有旋转性周期。你可以使用Grid/Check菜单选项(参阅检查网格一节)

28、来计算和显示周期性边界所有表面的旋转角度的最大值、最小值和平均值。如果最大值、最小值和平均值之间的差别可以忽略 ,那么网格有一个问题:对于指定轴来说网格几何外形不是周期性的。周期性边界的默认设定默认为平移周期性边界条件周期性边界的计算程序FLUENT在周期性边界处理流动就像反向周期性平面是和前面的周期性边界直接相邻一样,因此,当计算流过邻近流体单元的周期性边界时,就会使用与反向周期性平面相邻的流体单元的流动条件。轴边界的计算程序轴边界条件轴边界类型必须使用在对称几何外形的中线处(见下图)。它也可以用在圆柱两极的四边形和六面体网格的中线上(比如:像FLUENT4之类的结构网格生成代码所产生的网格

29、)。在轴边界处,你不必定义任何边界条件。Figure 1: 在轴对称几何外形的中线处轴边界条件的使用轴边界的计算程序要确定轴上特定点的适当物理值,FLUENT使用邻近单元中的单元值。流体条件流体区域是一组所有现行的方程都被解出的单元。对于流体区域只需要输入流体材料类型。你必须指明流体区域内包含哪种材料,以便于使用适当的材料属性。如果你模拟组分输运或者燃烧,你就不必在这里选择材料属性,当你激活模型时,组分模型面板中会指定混合材料。相似地,对于多相流动你也不必指定材料属性,当你在多相流模型面板中激活模型时,你会选择它们。可选择的输入允许你设定热、质量、动量、湍流、组分以及其它标量属性的源项。你也可

30、以为流体区域定义运动。如果邻近流体区域内具有旋转周期性边界,你就需要指定旋转轴。如果你使用k-e模型或者Spalart-Allmaras模型来模拟湍流,你可以选择定义流体区域为层流区域。如果你用DO模型模拟辐射,你可以指定流体是否参加辐射。对于多孔区域的信息,请参阅多孔介质条件一节。流体区域的输入在流体面板中(下图),你需要设定所有的流体条件,该面板是从设定边界条件菜单中打开的。Figure 1: 流体面板定义流体材料要定义流体区域内包含的材料,请在材料名字下拉列表中选择适当的选项。这一列表中会包含所有已经在使用材料面板中定义的流体材料(或者从材料数据库中加载)。如果你模拟组分输运或者多相流,

31、在流体面板的下拉列表中不会出现材料名。对于组分计算,所有流体区域的混合材料将会是你在组分模型面板中所指定的材料。对于多相流,所有流体区域的材料将会是你在多相流模型面板中所指定的材料。定义源项如果你希望在流体区域内定义热、质量、动量、湍流、组分以及其它标量属性的源项,你可以激活源项选项来实现。详情请参阅定义质量、动量、能量和其它源项一节。指定层流区域如果你使用k-e模型或者Spalart-Allmaras模型来模拟湍流,在指定的流体区域关掉湍流模拟是可能的(即:使湍流生成和湍流粘性无效,但是湍流性质的输运仍然保持)。如果你知道在某一区域流动是层流这一功能是很有用的。比方说:如果你知道机翼上的转唳

32、点的位置,你可以在层流单元区域边界和湍流区域边界创建一个层流/湍流过渡边界。这一功能允许你模拟机翼上的湍流过渡。要在流体区域内取消湍流模拟,请在流体面板中打开层流区域选项。 指定旋转轴如果邻近流体区域存在旋转性周期边界,或者区域是旋转的,你必须指定旋转轴。要定义旋转轴,请设定旋转轴方向和起点。这个轴和任何邻近壁面区域或任何其它单元区域所使用的旋转轴是独立的。对于三维问题,旋转轴起点是从旋转轴起点中输入的起点,方向为旋转轴方向选项中输入的方向。对于二维非轴对称问题,你只需要指定旋转轴起点,方向就是通过指定点的z方向。(z向是垂直于几何外形平面的,这样才能保证旋转出现在该平面内)。对于二维轴对称问

33、题,你不必定义轴,旋转通常就是关于x轴的,起点为(0,0)。定义区域运动对于旋转和平移坐标系要定义移动区域,请在运动类型下菜单(如果你用滚动条向右滚动到旋转轴起点和方向,就是可见的了)中选择运动参考坐标系。然后在面板的扩展部分设定适当的参数。要对移动或者滑移网格定义移动区域,在移动类型下拉列表中选择移动网格,然后在扩展面板中设定适当的参数。详情请参阅滑动网格。对于包括线性、平移运动的流体区域问题,通过设定X, Y,和Z分量来指定平移速度。对于包括旋转运动的问题,在旋转速度中指定旋转速度。旋转轴的定义请参阅指定旋转轴一节。关于在移动参考系中模拟流动的详细内容请参阅移动区域的流动一节。定义辐射参数

34、如果你使用DO辐射模型,你可以用参加辐射选项指定流体区域是否参加辐射的计算。详情请参阅辐射边界条件一节。固体条件固体区域是仅用来解决热传导问题的一组区域。作为固体处理的材料可能事实上是流体,但是假定其中没有对流发生。固体区域仅需要输入材料类型。你必须表明固体区域包含哪种材料,以便于计算是使用适当的材料。可选择的输入允许你设定体积热生成速度(热源)。你也可以定义固体区域的运动。如果在邻近的固体单元内有旋转性周期边界,你就需要指定旋转轴。如果你模拟DO辐射模型,你可以指定固体材料是否参加辐射的计算。固体区域的输入流体区域的输入在固体面板中(下图),你需要设定所有的固体条件,该面板是从设定边界条件菜

35、单中打开的。Figure 1: 固体面板定义流体材料要定义固体区域内包含的材料,请在材料名字下拉列表中选择适当的选项。这一列表中会包含所有已经在使用材料面板中定义的固体材料(或者从材料数据库中加载)。定义热源如果你希望在固体区域内定义热源项,你可以激活源项选项来实现。详情请参阅定义质量、动量、能量和其它源项一节。指定旋转轴如果邻近固体区域存在旋转性周期边界,或者区域是旋转的,你必须指定旋转轴。要定义旋转轴,请设定旋转轴方向和起点。这个轴和任何邻近壁面区域或任何其它单元区域所使用的旋转轴是独立的。对于三维问题,旋转轴起点是从旋转轴起点中输入的起点,方向为旋转轴方向选项中输入的方向。对于二维非轴对

36、称问题,你只需要指定旋转轴起点,方向就是通过指定点的z方向。(z向是垂直于几何外形平面的,这样才能保证旋转出现在该平面内)。对于二维轴对称问题,你不必定义轴,旋转通常就是关于x轴的,起点为(0,0)。定义区域运动对于旋转和平移坐标系要定义移动区域,请在运动类型下菜单(如果你用滚动条向右滚动到旋转轴起点和方向,就是可见的了)中选择运动参考坐标系。然后在面板的扩展部分设定适当的参数。要对移动或者滑移网格定义移动区域,在移动类型下拉列表中选择移动网格,然后在扩展面板中设定适当的参数。详情请参阅滑动网格。对于包括线性、平移运动的流体(?原文是流体,按理说应该是固体)区域问题,通过设定X, Y,和Z分量

37、来指定平移速度。对于包括旋转运动的问题,在旋转速度中指定旋转速度。旋转轴的定义请参阅指定旋转轴一节。关于在移动参考系中模拟流动的详细内容请参阅移动区域的流动一节。定义辐射参数如果你使用DO辐射模型,你可以用参加辐射选项指定固体区域是否参加辐射的计算。详情请参阅辐射边界条件一节。多孔介质条件多孔介质模型可以应用于很多问题,如通过充满介质的流动、通过过滤纸、穿孔圆盘、流量分配器以及管道堆的流动。当你使用这一模型时,你就定义了一个具有多孔介质的单元区域,而且流动的压力损失由多孔介质的动量方程中所输入的内容来决定。通过介质的热传导问题也可以得到描述,它服从介质和流体流动之间的热平衡假设,具体内容可以参

38、考多孔介质中能量方程的处理一节。多孔介质的一维化简模型,被称为多孔跳跃,可用于模拟具有已知速度/压降特征的薄膜。多孔跳跃模型应用于表面区域而不是单元区域,并且在尽可能的情况下被使用(而不是完全的多孔介质模型),这是因为它具有更好的鲁棒性,并具有更好的收敛性。详细内容请参阅多孔跳跃边界条件。多孔介质模型的限制如下面各节所述,多孔介质模型结合模型区域所具有的阻力的经验公式被定义为“多孔”。事实上多孔介质不过是在动量方程中具有了附加的动量损失而已。因此,下面模型的限制就可以很容易的理解了。l 流体通过介质时不会加速,因为事实上出现的体积的阻塞并没有在模型中出现。这对于过渡流是有很大的影响的,因为它意

39、味着FLUENT不会正确的描述通过介质的过渡时间。l 多孔介质对于湍流的影响只是近似的。详细内容可以参阅湍流多孔介质的处理一节。多孔介质的动量方程多孔介质的动量方程具有附加的动量源项。源项由两部分组成,一部分是粘性损失项 (Darcy),另一个是内部损失项:其中S_i是i向(x, y, or z)动量源项,D和C是规定的矩阵。在多孔介质单元中,动量损失对于压力梯度有贡献,压降和流体速度(或速度方阵)成比例。对于简单的均匀多孔介质:其中a是渗透性,C_2时内部阻力因子,简单的指定D和C分别为对角阵1/a 和C_2其它项为零。FLUENT还允许模拟的源项为速度的幂率:其中C_0和C_1为自定义经验

40、系数。注意:在幂律模型中,压降是各向同性的,C_0的单位为国际标准单位。多孔介质的Darcy定律通过多孔介质的层流流动中,压降和速度成比例,常数C_2可以考虑为零。忽略对流加速以及扩散,多孔介质模型简化为Darcy定律:在多孔介质区域三个坐标方向的压降为:其中1/a_ij为多孔介质动量方程1中矩阵D的元素v_j为三个方向上的分速度,D n_x、 D n_y、以及D n_z为三个方向上的介质厚度。在这里介质厚度其实就是模型区域内的多孔区域的厚度。因此如果模型的厚度和实际厚度不同,你必须调节1/a_ij的输入。.多孔介质的内部损失在高速流动中,多孔介质动量方程1中的常数C_2提供了多孔介质内部损失

41、的矫正。这一常数可以看成沿着流动方向每一单位长度的损失系数,因此允许压降指定为动压头的函数。如果你模拟的是穿孔板或者管道堆,有时你可以消除渗透项而只是用内部损失项,从而得到下面的多孔介质简化方程: 写成坐标形式为:多孔介质中能量方程的处理对于多孔介质流动,FLUENT仍然解标准能量输运方程,只是修改了传导流量和过度项。在多孔介质中,传导流量使用有效传导系数,过渡项包括了介质固体区域的热惯量:其中:h_f=流体的焓 h_s=固体介质的焓 f=介质的多孔性 k_eff=介质的有效热传导系数 Sh_f=流体焓的源项 Sh_s=固体焓的源项多孔介质的有效传导率多孔区域的有效热传导率k_eff是由流体的

42、热传导率和固体的热传导率的体积平均值计算得到:其中:f=介质的多孔性 k_f=流体状态热传导率(包括湍流的贡献k_t)k_s=固体介质热传导率如果得不到简单的体积平均,可能是因为介质几何外形的影响。有效传导率可以用自定义函数来计算。然而,在所有的算例中,有效传导率被看成介质的各向同性性质。多孔介质中的湍流处理在多孔介质中,默认的情况下FLUENT会解湍流量的标准守恒防城。因此,在这种默认的方法中,介质中的湍流被这样处理:固体介质对湍流的生成和耗散速度没有影响。如果介质的渗透性足够大,而且介质的几何尺度和湍流涡的尺度没有相互作用,这样的假设是合情合理的。但是在其它的一些例子中,你会压制了介质中湍

43、流的影响。如果你使用k-e模型或者Spalart-Allmaras模型,你如果设定湍流对粘性的贡献m_t为零,你可能会压制了湍流对介质的影响。当你选择这一选项时,FLUENT会将入口湍流的性质传输到介质中,但是它对流动混合和动量的影响被忽略了。除此之外,在介质中湍流的生成也被设定为零。要实现这一解策略,请在流体面板中打开层流选项 。激活这个选项就意味着多孔介质中的m_t为零,湍流的生成也为零。如果去掉该选项(默认)则意味着多孔介质中的湍流会像大体积流体流动一样被计算。概述模拟多孔介质流动时,对于问题设定需要的附加输入如下:1. 定义多孔区域2. 确定流过多孔区域的流体材料3. 设定粘性系数(多

44、孔介质动量方程3中的1/a_ij)以及内部阻力系数(多孔介质动量方程3中的C_2_ij),并定义应用它们的方向矢量。幂率模型的系数也可以选择指定。4. 定义多孔介质包含的材料属性和多孔性5. 设定多孔区域的固体部分的体积热生成速度(或任何其它源项,如质量、动量)(此项可选)。6. 如果合适的话,限制多孔区域的湍流粘性。7. 如果相关的话,指定旋转轴和/或区域运动。在定义粘性和内部阻力系数中描述了决定阻力系数和/或渗透性的方法。如果你使用多孔动量源项的幂律近似,你需要输入多孔介质动量方程5中的C_0和C_1来取代阻力系数和流动方向。在流体面板中(下图)你需要设定多孔介质的所有参数,该面板是从边界

45、条件菜单中打开的(详细内容请参阅边界条件的设定一节)Figure 1:多孔区域的流体面板定义多孔区域正如定义边界条件概述中所提到的,多孔区域是作为特定类型的流体区域来模拟的。亚表明流体区域是多孔区域,请在流体面板中激活多孔区域选项。面板会自动扩展到多孔介质输入状态。定义穿越多孔介质的流体在材料名字下拉菜单中选择适当的流体就可以定义通过多孔介质的流体了。如果你模拟组分输运或者多相流,流体面板中就不会出现材料名字下拉菜单了。对于组分计算,所有流体和/或多孔区域的混合材料就是你在组分模型面板中指定的材料。对于多相流模型,所有流体和/或多孔区域的混合材料就是你在多相流模型面板中指定的材料。定义粘性和内

46、部阻力系数粘性和内部阻力系数以相同的方式定义。使用笛卡尔坐标系定义系数的基本方法是在二维问题中定义一个方向矢量,在三维问题中定义两个方向矢量,然后在每个方向上指定粘性和/或阻力系数。在二维问题中第二个方向没有明确定义,它是垂直于指定的方向矢量和z向矢量所在的平面的。在三维问题中,第三个方向矢量是垂直于所指定的两个方向矢量所在平面的。对于三维问题,第二个方向矢量必须垂直于第一个方向矢量。如果第二个方向矢量指定失败,解算器会确保它们垂直而忽略在第一个方向上的第二个矢量的任何分量。所以你应该确保第一个方向指定正确。在三维问题中也可能会使用圆锥(或圆柱)坐标系来定义系数,具体如下:定义阻力系数的过程如

47、下:1. 定义方向矢量。l 使用笛卡尔坐标系,简单指定方向1矢量,如果是三维问题,指定方向2矢量。每一个方向都应该是从(0,0)或者(0,0,0)到指定的(X,Y)或(X,Y,Z)矢量。(如果方向不正确请按上面的方法解决)l 对于有些问题,多孔介质的主轴和区域的坐标轴不在一条直线上,你不必知道多孔介质先前的方向矢量。在这种情况下,三维中的平面工具或者二维中的线工具可以帮你确定这些方向矢量。1. 捕捉Snap平面工具(或者线工具)到多孔区域的边界。(请遵循使用面工具和线工具中的说明,它在已存在的表面上为工具初始化了位置)。2. 适当的旋转坐标轴直到它们和多孔介质区域成一条线。3. 当成一条线之后,在流体面板中点击从平面工具更新或者从线工具更新按钮。FLUENT会自动将方向1矢量指向为工具的红(三维)或绿(二维)箭头所指的方向。l 要使用圆锥坐标系(比方说环状、锥状顾虑单元),请遵循下面步骤(这一选项只用于三维问题):1. 打开圆锥选项2. 指定圆锥轴矢量和在锥轴上的点。圆锥轴矢量的方向将会是从(0,

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 小学资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁