《福建省龙岩市长汀连城上杭武平漳平永定六校一中2020_2021学年高二数学下学期期中联考试题PDF202105070389.pdf》由会员分享,可在线阅读,更多相关《福建省龙岩市长汀连城上杭武平漳平永定六校一中2020_2021学年高二数学下学期期中联考试题PDF202105070389.pdf(6页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、书书书?六校联考?半期考高二数学试卷?参考答案?第?页?共?页? ? ? ? ? ? ? ? ? ? 长汀? 连城? 上杭? 武平? 漳平? 永定? 六校? 一中? 联考? ? ? ? ? ? ? ? ?学年第二学期半期考高二数学试题参考答案? ? ? ? ? ? ? ? ? ? ? ? ? ? ?因为? ? ? ?所以? ? ?因为? ? ? ? ? ? ? ? ? ? ?所以? ? ? ? ? ? ? ? ?对于处处可导的函数?函数的极值点要满足两个条件?一个是该点的导数为?另一个是该点左?右的导数值异号?故?与?极值点的个数分别为? ? ? ? ? ?门中选?门共有? ? ?种选法?故?
2、正确?课程?乐? ?射?排在不相邻的两周?共有? ? ? ?种排法?故?错误?课程?御? ?书? ?数?排在相邻的三周?共有? ? ? ?种排法?故?正确?课程?礼?排在第一周?课程?数?不排在最后一周?共有? ? ?种排法?故?正确? ? ? ? ? ? ? ? ?当? ? ? ? ?时? ? ?当? ? ? ? ?时? ? ? ?故当? ? ?时?取得最大值?且最大值为? ? ? ? ? ? ? ? ?元? ? ?设?在复平面内对应的点分别为? ? ?因为? ? ? ? ? ? ? ? ? ?所以?的轨迹是以?为圆心?为半径的圆?的轨迹是以?为圆心?为半径的圆?两圆的圆心距为槡? ?所以?
3、 ?的最大值为槡槡? ? ? ? ? ? ? ? ? ?又? ? ? ?所以?的最大值为槡? ? ? ? ? ?由? ?的图象可知?在?上单调递增?因为?槡?槡? ?所以?槡? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?槡?槡? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?故选? ? ? ? ? ? ?通项? ? ? ? ? ? ? ? ?则?即? ?故选? ? ? ? ? ?因为? ?所以? ? ? ? ? ? ? ?所以?的图象在点? ?处的切线方程为? ?正确?因为? ? ? ? ? ?所以?不单调?错
4、误?令? ? ? ? ? ? ?解得? ? ?当? ?时? ? ?单调递减?当? ?时? ?单调递增?所以? ? ? ? ? ? ? ? ? ? ?解得? ?故选? ? ? ? ? ?甲由道路网?处出发?随机地选择一条沿街的最短路径到达?处需走?步?共有? ? ?种走法?故?正确?甲由道路网?处出发?随机地选择一条沿街的最短路径到达?处需走?步?有?种走法?从?处沿街的最短路径到达?处需走?步?有? ?种走法?所以共有? ? ? ? ? ?种走法?故?错误?由?可知?甲从?必须经过?到达?处的走法有? ?种?同理乙从?必须经过?到达?处的走法也有? ?种?则甲?乙两人在?处相遇?共有? ? ?
5、 ? ? ?种走法?故?错误?甲?乙两人沿最短路径行走?只可能在?处相遇?他们在? ?处相遇的走法有? ?种?则?六校联考?半期考高二数学试卷?参考答案?第?页?共?页? ? ? ? ? ? ? ? ? ? ? ? ? ?故?正确?综上?选? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?因为? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?所以? ? ? ? ? ? ? ?由于最前面不能排?所以要从?和?中选一个放在最前面?若最前面排?则有? ? ?个?若最前面排?则有? ? ? ?个?故?个?连在一起的不同的十位数共有?
6、? ? ? ? ? ? ? ? ? ?个? ? ? ?设? ? ? ? ? ?则? ? ? ? ? ?所以?的极大值为? ? ?极小值为? ? ?又? ? ? ? ? ? ? ? ?故可作出此函数的图象?如图所示?所以当且仅当? ?或?时?有?个零点?当? ? ?时?有?个零点? ? ?解? ?若选择?因为? ?所以? ? ? ? ? ? ?分解得? ? ?分若选择?因为?的实部与虚部互为相反数?所以? ? ? ? ? ?分解得? ?或?分若选择?因为?为纯虚数?所以? ? ? ? ? ? ?分解得? ? ?分?因为? ? ? ?所以? ? ? ? ? ?分所以? ? ? ? ? ? ? ?
7、? ?分因为?为整数?所以? ?为平方数? ? ? ? ?为奇数?分因为? ? ? ? ? ? ?或? ? ? ? ? ? ?分所以验证可得? ? ? ?即? ? ?分因为? ?所以? ? ? ? ?其在复平面内对应点的坐标为? ? ? ?分? ? ?解? ?由题可知? ? ? ? ? ? ?分? ? ? ? ? ? ?分? ? ? ?分?取? ?则? ? ? ? ? ? ? ? ? ? ? ? ? ?分取? ?则? ? ?分故? ? ? ? ? ? ? ? ? ?解得? ? ? ? ? ?分? ? ?证明?因为? ? ?且?是棱? ?的中点?所以? ?分因为四边形? ? ? ?是平行四边形?
8、所以? ? ?则? ?分因为? ?平面? ? ? ?且?平面? ? ? ?所以? ?分因为? ? ?所以?平面? ? ?分因为?平面?所以平面?平面? ? ?分?六校联考?半期考高二数学试卷?参考答案?第?页?共?页? ? ? ? ? ? ? ? ? ? ?解?由?可知? ? ?两两垂直?则以?为原点?以? ? ? ? ? ?的正方向分别为?轴的正方向?建立如图所示的空间直角坐标系? ? ?设? ? ?则? ?槡?槡? ?槡? ?槡?槡? ?故? ? ?槡?槡? ? ?槡? ? ?槡?槡?分设平面?的法向量? ?则? ?槡? ? ? ?槡? ?槡? ? ? ?令?槡? ?得?槡? ?分因为?
9、? ?且? ? ? ? ? ?所以? ? ?因为? ?平面? ? ? ?所以? ? ?则? ?平面? ? ?从而平面? ? ?的一个法向量为? ? ?槡?槡?分则? ? ? ? ? ? ? ? ? ?槡? ?槡? ?分故平面?与平面? ? ?所成角的正弦值为槡? ?分? ? ?解? ?因为? ? ? ?所以? ? ? ? ?因为函数?在? ?处取得极值? ?所以? ? ? ? ? ? ? ? ? ? ?解得? ? ?分验证?当? ? ?时? ? ? ? ? ? ? ? ?由? ? ?得?或? ?由? ? ?得? ?所以?在? ?处取得极大值?满足题意?分?设切点坐标为? ? ? ?因为? ?
10、? ? ?所以切线方程为? ? ? ? ? ? ?分又切线过点? ? ? ? ?所以? ? ? ? ? ? ? ? ? ? ? ?即? ? ? ? ? ? ? ? ? ? ? ?分解得? ?或? ? ?分所以经过点? ?且与曲线?相切的切线方程为? ? ? ?或? ? ? ? ? ?分? ? ?解? ?由题意?共有? ? ? ? ? ? ?种安排方法?分?该问题共分为四类?第一类?人中恰有?人分配到其中一项活动中?另外两项活动各分配?人?共有? ? ? ?种?分第二类?人中恰有?人分配到其中一项活动中?另外两项活动分别分配?人与?人?共有? ? ? ?种?分第三类?人中恰有?人分配到其中一项活
11、动中?另外两项活动分别分配?人与?人?共有? ? ? ?种?分?六校联考?半期考高二数学试卷?参考答案?第?页?共?页? ? ? ? ? ? ? ? ? ?第四类?人中恰有?人分配到其中一项活动中?另外两项活动各分配?人?共有? ? ? ?种? ?分所以每项活动至少安排?人的方法总数为? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?种? ?分? ? ?解? ?因为? ?所以? ? ?分令? ? ?得? ? ?分当? ?时? ? ?当? ?时? ? ? ?故?的单调递增区间是? ? ?单调递减区间是? ?分? ? ? ? ? ? ? ? ?分因为? ?又? ?所以? ?则? ? ?分令? ? ?则?在?上单调递增?因为当? ?时? ? ? ?所以? ? ? ? ? ? ? ? ? ?因为? ? ? ? ?所以? ? ? ?使得? ? ?分且当?时? ?则? ? ?当?时? ?则? ? ? ?所以?在?上单调递增?在?上单调递减?分故? ? ? ?由? ? ? ?得? ? ?分由? ? ? ?得? ? ? ? ? ?即? ? ?结合? ? ? ?得? ? ? ?所以? ? ? ? ? ?分令? ? ? ? ? ? ?则? ? ? ?所以?在? ? ?上单调递增?所以? ? ?即?故?的最小值为? ?分