《高考分类汇编之概率统计与排列组合二项式定理4.doc》由会员分享,可在线阅读,更多相关《高考分类汇编之概率统计与排列组合二项式定理4.doc(7页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、【精品文档】如有侵权,请联系网站删除,仅供学习与交流高考分类汇编之概率统计与排列组合二项式定理4.精品文档.2011年高考分类汇编之概率统计与排列组合二项式定理(四)湖南文5通过随机询问110名不同的大学生是否爱好某项运动,得到如下的列联表:男女总计爱好402060不爱好203050总计6050110由附表:0050001000013841663510828参照附表,得到的正确结论是( )A 有99%以上的把握认为“爱好该项运动与性别有关”B 有99%以上的把握认为“爱好该项运动与性别无关”C 在犯错误的概率不超过01%的前提下,认为“爱好该项运动与性别有关”D 在犯错误的概率不超过01%的前
2、提下,认为“爱好该项运动与性别无关”答案:A解析:由,而,故由独立性检验的意义可知选A.10已知某试验范围为10,90,若用分数法进行4次优选试验,则第二次试点可以是 答案:40或60(只填一个也正确)解析:有区间长度为80,可以将其等分8段,利用分数法选取试点:,由对称性可知,第二次试点可以是40或60。16、给定,设函数满足:对于任意大于的正整数,(1)设,则其中一个函数在处的函数值为 ;(2)设,且当时,则不同的函数的个数为 。答案:(1),(2)16解析:(1)由题可知,而时,则,故只须,故。(2)由题可知,则,而时,即,即,由乘法原理可知,不同的函数的个数为。18(本题满分12分)某
3、河流上的一座水力发电站,每年六月份的发电量Y(单位:万千瓦时)与该河上游在六月份的降雨量X(单位:毫米)有关据统计,当X=70时,Y=460;X每增加10,Y增加5;已知近20年X的值为:140,110,160,70,200,160,140,160,220,200,110,160,160,200,140,110,160,220,140,160(I)完成如下的频率分布表: 近20年六月份降雨量频率分布表降雨量70110140160200220频率(II)假定今年六月份的降雨量与近20年六月份的降雨量的分布规律相同,并将频率视为概率,求今年六月份该水力发电站的发电量低于490(万千瓦时)或超过53
4、0(万千瓦时)的概率解:(I)在所给数据中,降雨量为110毫米的有3个,为160毫米的有7个,为200毫米的有3个,故近20年六月份降雨量频率分布表为降雨量70110140160200220频率(II)故今年六月份该水力发电站的发电量低于490(万千瓦时)或超过530(万千瓦时)的概率为江苏5.从1,2,3,4这四个数中一次随机取两个数,则其中一个数是另一个的两倍的概率是_答案:解析:从1,2,3,4这四个数中一次随机取两个数有(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)共6种. 其中符合条件的有2种,所以概率为.也可以由得到.本题主要考查随机事件与概率,古典概型的概
5、率计算,互斥事件及其发生的概率.容易题.6.某老师从星期一到星期五收到信件数分别是10,6,8,5,6,则该组数据的方差.答案:.解析:五个数的平均数是7,方差为还可以先把这组数都减去6再求方差,.本题主要考查总体分布的估计,总体特征数的估计,平均数方差的计算,考查数据处理能力,容易题.附加:23(本小题满分10分)设整数,是平面直角坐标系中的点,其中,(1)记为满足的点的个数,求;(2)记为满足是整数的点的个数,求解:(1)点P的坐标满足条件: (2)设为正整数,记为满足题设条件以及的点P的个数,只要讨论的情形,由知 设 所以 将代入上式,化简得 所以江西理6. 变量与相对应的一组数据为(1
6、0,1),(11.3,2),(11.8,3),(12.5,4),(13,5);变量 与相对应的一组数据为(10,5),(11.3,4),(11.8,3),(12.5,2),(13,1),表示变量与之间的线性相关系数,表示变量与之间的线性相关系数,则A. B. C. D.【答案】C【解析】,选C12. 小波通过做游戏的方式来确定周末活动,他随机的往单位圆内投掷一点,若此点到圆心的距离大于,则周末去看电影;若此点到圆心的距离小于,则去打篮球;否则,在家看书.则小波周末不在家看书的概率为 .【答案】【解析】16.(本小题满分12分)某饮料公司招聘了一名员工,现对其进行一项测试,以便确定工资级别.公司
7、准备了两种不同的饮料共8杯,其颜色完全相同,并且其中4杯为饮料,另外4杯为饮料.公司要求此员工一一品尝后,从8杯饮料中选出4杯饮料.若4杯都选对,则月工资定为3500元;若4杯选对3杯,则月工资定为2800元;否则月工资定为2100元.令表示此人选对饮料的杯数.假设此人对和两种饮料没有鉴别能力.(1)求的分布列;(2)求此员工月工资的期望.【解析】(1)的所有可能取值为:0, 1, 2, 3, 4即01234(2)令表示新录用员工的月工资,则的所有可能取值为2100,2800,3500的分布列为:210028003500所以新录用员工月工资的期望为2280元.江西文7.为了普及环保知识,增强环
8、保意识,某大学随即抽取30名学生参加环保知识测试,得分(十分制)如图所示,假设得分值的中位数为,众数为,平均值为,则( )A. B. C. D.答案:D 计算可以得知,中位数为5.5,众数为5所以选D8.为了解儿子身高与其父亲身高的关系,随机抽取5对父子的身高数据如下:父亲身高x(cm)174176176176178儿子身高y(cm)175175176177177则y对x的线性回归方程为A.y = x-1 B.y = x+1 C.y = 88+ D.y = 176C 线性回归方程,16.(本小题满分12分)某饮料公司对一名员工进行测试以便确定其考评级别公司准备了两种不同的饮料共5 杯,其颜色完全相同,并且其中3杯为A饮料,另外2杯为B饮料,公司要求此员工一一品尝后,从5杯饮料中选出3杯A饮料若该员工3杯都选对,则评为优秀;若3 杯选对2杯,则评为良好;否则评为及格假设此人对A和B两种饮料没有鉴别能力(1)求此人被评为优秀的概率;(2)求此人被评为良好及以上的概率解:(1)员工选择的所有种类为,而3杯均选中共有种,故概率为. (2)员工选择的所有种类为,良好以上有两种可能?:3杯均选中共有种;?:3杯选中2杯共有种。故概率为.解析:本题考查的主要知识是排列组合与概率知识的结合,简单题。